Skip to main content
Log in

Phase evolution and dielectric properties of Ba(Ti1/6Sn1/6Zr1/6Hf1/6Nb1/6Ga1/6)O3 high-entropy perovskite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-entropy ceramics (HECs), Ba(Ti1/6Sn1/6Zr1/6Hf1/6Nb1/6Ga1/6)O3, with perovskite structure were successfully synthesized through solid-state reaction method. HECs can be divided into three stages in the calcination process: from multiphase state to two-phase state and finally to single-phase perovskite structure. High entropy is the main driving force for the formation of perovskite HECs. The equilibrium phase of 1500 °C was transformed back to its multiphase state at low temperature, and vice versa on heating. The elements of the HECs are homogeneously distributed, and the relative density of the ceramic is 92.7%. The microstructures are fine, in which the average grain size is less than 1 μm. The dielectric constant εr and loss tangent tan δ exhibit slightly frequency dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014). https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang et al., Prog. Mater. Sci. 61, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  3. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  4. B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys (Elsevier, Amsterdam, 2014)

    Google Scholar 

  5. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  6. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016). https://doi.org/10.1016/j.mattod.2015.11.026

    Article  CAS  Google Scholar 

  7. C.M. Rost, E. Sachet, T. Borman et al., Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  8. D. Berardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi-Rapid Res. Lett. 10, 328 (2016). https://doi.org/10.1002/pssr.201600043

    Article  CAS  Google Scholar 

  9. A. Sarkar, L. Velasco, D. Wang et al., Nat. Commun. 9, 3400 (2018). https://doi.org/10.1038/s41467-018-05774-5

    Article  CAS  Google Scholar 

  10. D. Berardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4, 9536 (2016). https://doi.org/10.1039/c6ta03249d

    Article  CAS  Google Scholar 

  11. Q. Wang, A. Sarkar, Z. Li et al., Electrochem. Commun. 100, 121 (2019)

    Article  CAS  Google Scholar 

  12. N. Qiu, H. Chen, Z.M. Yang, S. Sun, Y. Wang, Y.H. Cui, J. Alloy. Compd. 777, 767 (2019). https://doi.org/10.1016/j.jallcom.2018.11.049

    Article  CAS  Google Scholar 

  13. K.P. Chen, X.T. Pei, L. Tang et al., J. Eur. Ceram. Soc. 38, 4161 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.063

    Article  CAS  Google Scholar 

  14. J.L. Braun, C.M. Rost, M. Lim et al., Adv. Mater. 30, 8 (2018). https://doi.org/10.1002/adma.201805004

    Article  CAS  Google Scholar 

  15. X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101, 4486 (2018). https://doi.org/10.1111/jace.15779

    Article  CAS  Google Scholar 

  16. R. Witte, A. Sarkar, R. Kruk et al., Phys. Rev. Mater. 3, 8 (2019). https://doi.org/10.1103/PhysRevMaterials.3.034406

    Article  Google Scholar 

  17. N.Q. Minh, J. Am. Ceram. 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

    Article  CAS  Google Scholar 

  18. R.Z. Zuo, J. Rodel, R.Z. Chen, L.T. Li, J. Am. Ceram. Soc. 89, 2010 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x

    Article  CAS  Google Scholar 

  19. J.G. Hao, W.F. Bai, W. Li, J.W. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012). https://doi.org/10.1111/j.1551-2916.2012.05146.x

    Article  CAS  Google Scholar 

  20. M. Zhang, X.Y. Zhang, X.W. Qi, Y. Li, L. Bao, Y.H. Gu, Ceram. Int. 43, 16957 (2017). https://doi.org/10.1016/j.ceramint.2017.09.101

    Article  CAS  Google Scholar 

  21. S.C. Jiang, T. Hu, J. Gild et al., Scr. Mater. 142, 116 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040

    Article  CAS  Google Scholar 

  22. R. Djenadic, A. Sarkar, O. Clemens et al., Mater. Res. Lett. 5, 102 (2017). https://doi.org/10.1080/21663831.2016.1220433

    Article  CAS  Google Scholar 

  23. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926). https://doi.org/10.1007/BF01507527

    Article  CAS  Google Scholar 

  24. R.D. Shannon, Acta Crystallogr. A. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Nature Science Foundation of China under Grant (No. 51972048) and the Natural Science Foundation of Hebei Province (No. E2018501042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwei Qi.

Ethics declarations

Conflicts of interest

The authors would like to declare on behalf of their co-authors that the work described is original research and has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed, and there is no conflict of interests during the submission of this manuscript. If accepted, this manuscript will not be published elsewhere in the same form, in English or in any other language, without the written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Yan, J., Zhang, X. et al. Phase evolution and dielectric properties of Ba(Ti1/6Sn1/6Zr1/6Hf1/6Nb1/6Ga1/6)O3 high-entropy perovskite ceramics. J Mater Sci: Mater Electron 31, 7760–7765 (2020). https://doi.org/10.1007/s10854-020-03313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03313-x

Navigation