Skip to main content

Advertisement

Log in

Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, AgNbO3 antiferroelectric ceramics have attracted great attention by virtue of their characters of high energy storage density and environmental friendliness. To further optimize the electrical properties, in this work, Lu2O3 modified AgNbO3 ceramics were prepared via conventional solid state method. Crystal structure and element analysis indicated the Lu3+ ion preferred to enter the A-site when Lu2O3 content was lower than 2 mol%, otherwise, it was more likely to form LuNbO4 or Lu3NbO7-based solid solutions. Remarkably improved stability of antiferroelectric phase was observed once Lu3+ ions enter into the A-site, on account of the decrease of cell volume and tolerance factor. As a consequence, an enhanced recoverable energy storage density (Wrec) of 3.5 J/cm3 was achieved in 1 mol% Lu2O3 modified AgNbO3 ceramics at 210 kV/cm, which is superior to the other lead-free ceramics under moderate electric field (< 220 kV/cm). It is believed our study will provide a good reference for the development of AgNbO3-based dielectric capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, J. Thomas, Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz. 4, 840–858 (2019)

    CAS  Google Scholar 

  2. X. Jian, H. Wang, G. Rao, L. Jiang, H. Wang, C.M. Subramaniyam, A. Mahmood, W. Zhang, Y. Xiang, S.X. Dou, Z. Zhou, D. Hui, K. Kalantar-Zadeh, N. Mahmood, Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364, 578–588 (2019)

    CAS  Google Scholar 

  3. B. Xu, J. Iniguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017)

    CAS  Google Scholar 

  4. Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020)

    Google Scholar 

  5. S. Aboubakr, A. Hajjaji, M. Rguiti, K. Benkhouja, C. Courtois, A high dielectric composite for energy storage application. Int. J. Hydrog. Energy 42, 19504–19511 (2017)

    CAS  Google Scholar 

  6. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4, 17279–17287 (2016)

    CAS  Google Scholar 

  7. M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain. Chem. Eng. 6, 12755–12765 (2018)

    CAS  Google Scholar 

  8. Y. Ahn, J. Seo, J.Y. Son, Ferroelectric domain switching kinetics of a lead-free AgNbO3 thin film on glass substrate. Appl. Surf. Sci. 357, 429–432 (2015)

    CAS  Google Scholar 

  9. M. Zhou, R. Liang, Z. Zhou, C. Xu, X. Nie, X. Chen, X. Dong, High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15) (Zr0.10Ti0.90)O3 ceramics. Mater. Res. Bull. 98, 166–172 (2018)

    CAS  Google Scholar 

  10. Y. Xie, J. Wang, Y. Yu, W. Jiang, Z. Zhang, Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl. Surf. Sci. 440, 1150–1158 (2018)

    CAS  Google Scholar 

  11. L. Zhao, J. Gao, Q. Liu, S. Zhang, J.F. Li, Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces 10, 819–826 (2018)

    CAS  Google Scholar 

  12. N. Luo, K. Han, L. Liu, B. Peng, X. Wang, C. Hu, H. Zhou, Q. Feng, X. Chen, Y. Wei, Lead-free Ag1−3xLaxNbO3 antiferroelectric ceramics with high-energy storage density and efficiency. J. Am. Ceram. Soc. 102, 4640–4647 (2019)

    CAS  Google Scholar 

  13. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, X. Zeng, H. Huang, Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl. Mater. Interfaces 7, 13512–13517 (2015)

    CAS  Google Scholar 

  14. Y. Liu, Y. Wang, X. Hao, J. Xu, Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol–gel method. Ceram. Int. 39, S513–S516 (2013)

    CAS  Google Scholar 

  15. X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb, La) (Zr, Sn, Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013)

    Google Scholar 

  16. X. Yang, C. He, Y. Liu, X. Long, Structure and properties of (NaxLaxPb1−2x) (Lu1/2Nb1/2)O3 antiferroelectric ceramics. Mater. Des. 92, 330–334 (2016)

    CAS  Google Scholar 

  17. L. Zhao, Q. Liu, S. Zhang, J.-F. Li, Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C 4, 8380–8384 (2016)

    CAS  Google Scholar 

  18. Y. Tian, L. Jin, Q.Y. Hu, K. Yu, Y.Y. Zhuang, G. Viola, I. Abrahams, Z. Xu, X.Y. Wei, H.X. Yan, Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 7, 834–842 (2019)

    CAS  Google Scholar 

  19. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7, 14118–14128 (2019)

    CAS  Google Scholar 

  20. K. Han, N. Luo, Y. Jing, X. Wang, B. Peng, L. Liu, C. Hu, H. Zhou, Y. Wei, X. Chen, Q. Feng, Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int. 45, 5559–5565 (2019)

    CAS  Google Scholar 

  21. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5, 17525–17531 (2017)

    CAS  Google Scholar 

  22. K. Han, N. Luo, S. Mao, F. Zhuo, X. Chen, L. Liu, C. Hu, H. Zhou, X. Wang, Y. Wei, Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J. Materiomics 5, 597–605 (2019)

    Google Scholar 

  23. S. Li, H. Nie, G. Wang, C. Xu, N. Liu, M. Zhou, F. Cao, X. Dong, Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring. J. Mater. Chem. C 7, 1551–1560 (2019)

    CAS  Google Scholar 

  24. H. Shimizu, H. Guo, S.E. Reyes-Lillo, Y. Mizuno, K.M. Rabe, C.A. Randall, Lead-free antiferroelectric: xCaZrO3–(1–x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans. 44, 10763–10772 (2015)

    CAS  Google Scholar 

  25. R. Xu, Q. Zhu, J. Tian, Y. Feng, Z. Xu, Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics. Ceram. Int. 43, 2481–2485 (2017)

    CAS  Google Scholar 

  26. K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. J. Mater. Chem. A 7, 26293–26301 (2019)

    CAS  Google Scholar 

  27. L.A. Xue, Y. Chen, R.J. Brook, The effect of lanthanide contraction on grain growth in lanthanide-doped BaTiO3. J. Mater. Sci. Lett. 7, 1163–1165 (1988)

    CAS  Google Scholar 

  28. L.A. Xue, Y. Chen, R.J. Brook, The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Mater. Sci. Eng. BI, 193–201 (1988)

    Google Scholar 

  29. C.L. Yuan, P. Darmawan, M.Y. Chan, P.S. Lee, Leakage conduction mechanism of amorphous Lu2O3 high-k dielectric films fabricated by pulsed laser ablation. Europhys. Lett. 77, 67001 (2007)

    Google Scholar 

  30. P. Darmawan, P.S. Chia, P.S. Lee, Rare-earth based ultra-thin Lu2O3 for high-k dielectrics. J. Phys. Conf. Ser. 61, 229–233 (2007)

    CAS  Google Scholar 

  31. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I.L. Fedushkin, H. Schumann, Y. Lebedinskii, A. Zenkevich, Atomic-layer deposition of Lu2O3. Appl. Phys. Lett. 85, 630–632 (2004)

    CAS  Google Scholar 

  32. S. Ohmi, M. Takeda, H. Ishiwara, H. Iwai, Electrical characteristics for Lu2O3 thin films fabricated by E-beam deposition method. J. Electrochem. Soc. 151, G279–G283 (2004)

    CAS  Google Scholar 

  33. Q. Lin, M. Jiang, D. Lin, Q. Zheng, X. Wu, X. Fan, Effects of La-doping on microstructure, dielectric and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 24, 734–739 (2012)

    Google Scholar 

  34. B.W. Lee, E.J. Lee, Effects of complex doping on microstructural and electrical properties of PZT ceramics. J. Electroceram. 17, 597–602 (2006)

    Google Scholar 

  35. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, H. Yan, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J. Adv. Dielectr. 03, 1350007 (2013)

    Google Scholar 

  36. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43, 9593–9599 (2017)

    CAS  Google Scholar 

  37. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, H. Wei, Lead-free BaTiO3–Bi0.5Na0.5TiO3–Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    CAS  Google Scholar 

  38. Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl. Mater. Interfaces 11, 36824–36830 (2019)

    CAS  Google Scholar 

  39. T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, X. Wei, Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3–BaTiO3 lead-free ceramics for energy storage. Mater. Lett. 137, 79–81 (2014)

    CAS  Google Scholar 

  40. D. Zheng, R. Zuo, D. Zhang, Y. Li, X. Tan, Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    CAS  Google Scholar 

  41. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133–4144 (2018)

    CAS  Google Scholar 

  42. Z. Chen, X. Bai, H. Wang, J. Du, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang, Achieving high-energy storage performance in 0.67Bi1−xSmxFeO3–0.33BaTiO3 lead-free relaxor ferroelectric ceramics. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.181

    Article  Google Scholar 

  43. L. Zhang, Y. Pu, M. Chen, T. Wei, W. Keipper, R. Shi, X. Guo, R. Li, X. Peng, High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40, 71–77 (2020)

    CAS  Google Scholar 

  44. L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. 383, 123154 (2020)

    Google Scholar 

  45. F. Li, R. Si, T. Li, C. Wang, J. Zhai, High energy storage performance and fast discharging speed in dense 0.7Bi0.5K0.5TiO3–0.3SrTiO3 ceramics via a novel rolling technology. Ceram. Int. 46, 6995–6998 (2020)

    Google Scholar 

  46. F. Li, T. Jiang, J. Zhai, B. Shen, H. Zeng, Exploring novel bismuth-based materials for energy storage applications. J. Mater. Chem. C 6, 7976–7981 (2018)

    CAS  Google Scholar 

  47. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (Grant 11864004), Nature Science Foundation of Guangxi (Grant 2017GXNSFBA198132), Science and Technology Major Project of Guangxi (Grant AA17204110), and Innovation Project of Guangxi Graduate Education (Grant YCSW2019053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nengneng Luo or Yuezhou Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Luo, N., Han, K. et al. Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics. J Mater Sci: Mater Electron 31, 7731–7741 (2020). https://doi.org/10.1007/s10854-020-03309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03309-7

Navigation