Skip to main content
Log in

Corrosion effects on sintered nano-silver joints and the secondary biological hazards

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Corrosion can affect the service life and reliability of electronic devices, in addition, corrosion products may flow out with sweat and enter the body through skin. In the current study, mechanical and biological corrosion experiments were performed to explore the mechanical properties and secondary biological hazards of nano-silver paste in the corrosive environment. The effects of corrosion time on shear strength and corrosion products of sintered nano-silver joints on biological organism were investigated. The survival rate of hamster lung cells was measured by MTT assay and flow cytometry after cultured in nutrient solution containing different concentration of nano-silver particles. Experimental analysis reveals that the shear strength of sintered nano-silver joint decreases drastically with the increasing of corrosion time, and the fracture mode changes from interlayer to interfacial fracture. A modified Weibull statistical model was proposed to predict the average failure strength and probability of sintered nano-silver joints at different corrosion time. In addition, biological experiment demonstrates that with increasing of nano-silver particles concentration, the survival rate of hamster lung cells firstly increases and then decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Yao, H. Gong, Damage and viscoplastic behavior of sintered nano-silver joints under shear loading. Eng. Fract. Mech. 10, 106741 (2019)

    Google Scholar 

  2. Y. Yao, X. Long, L.M. Keer, A review of recent research on the mechanical behavior of lead-free solders. Appl. Mech. Rev. 69(4), 040802 (2017)

    Google Scholar 

  3. K.S. Siow, Mechanical properties of nano-silver joints as die attach material. J. Alloys Compd. 514, 6–19 (2012)

    CAS  Google Scholar 

  4. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43(7), 2459–2466 (2014)

    CAS  Google Scholar 

  5. S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017)

    CAS  Google Scholar 

  6. S.B. Wang, C. Kirchlechner, L.M. Keer, G. Dehm, Y. Yao, Interfacial fracture toughness of sintered hybrid silver interconnects. J. Mater. Sci. 55(7), 2891–2904 (2020)

    CAS  Google Scholar 

  7. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43(4), 947–961 (2014)

    CAS  Google Scholar 

  8. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloys Compd. 774, 487–494 (2019)

    CAS  Google Scholar 

  9. T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)

    CAS  Google Scholar 

  10. K. Qi, X. Chen, G.Q. Lu, Effect of interconnection area on shear strength of sintered joint with nano-silver paste. Solder Surf. Mt Tech. 20(1), 8–12 (2008)

    CAS  Google Scholar 

  11. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Creep properties of low-temperature sintered nano-silver lap shear joints. Mat. Sci. Eng. A 579, 108–113 (2013)

    CAS  Google Scholar 

  12. G. Chen, Z.S. Zhang, Y.H. Mei, X. Li, D.J. Yu, L. Wang, X. Chen, Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater. 72, 61–71 (2014)

    Google Scholar 

  13. C. Chen, Z. Zhang, D. Kim, B. Zhang, M. Tanioku, T. Ono, M. Kazuhiko, K. Suganuma, Interfacial oxidation protection and thermal-stable sinter Ag joining on bare Cu substrate by single-layer graphene coating. Appl. Surf. Sci. 497, 143797 (2019)

    Google Scholar 

  14. K.S. Tan, Y.H. Wong, K.Y. Cheong, Thermal characteristic of sintered Ag–Cu nanopaste for high-temperature die-attach application. Int. J. Therm. Sci. 87, 169–177 (2015)

    CAS  Google Scholar 

  15. H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scripta. Mater. 66(11), 931–934 (2012)

    CAS  Google Scholar 

  16. Z. Wang, W. Wang, Z. Jiang, D. Yu, Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics. Prog. Org. Coat. 101, 604–611 (2016)

    CAS  Google Scholar 

  17. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4), 1943–1948 (2010)

    CAS  Google Scholar 

  18. Y. Tan, X. Li, G. Chen, Y.H. Mei, X. Chen, Three-dimensional visualization of the crack-growth behavior of nano-silver joints during shear creep. J. Electron. Mater. 44(2), 761–769 (2015)

    CAS  Google Scholar 

  19. J. Carr, X. Milhet, P. Gadaud, S.A. Boyer, G.E. Thompson, P. Lee, Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints. J. Mater. Process. Tech. 225, 19–23 (2015)

    CAS  Google Scholar 

  20. C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, K. Tsuruta, Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices. Acta Mater. 129, 41–51 (2017)

    CAS  Google Scholar 

  21. S. Nishimoto, S.A. Moeini, T. Ohashi, Y. Nagatomo, P. McCluskey, Novel silver die-attach technology on silver pre-sintered DBA substrates for high temperature applications. Microelectron. Reliab. 87, 232–237 (2018)

    CAS  Google Scholar 

  22. Z. Zhang, X. Hu, X. Jiang, Y. Li, Influences of mono-Ni(P) and dual-Cu/Ni(P) plating on the interfacial microstructure evolution of solder joints. Metall. Mater. Trans. A 50, 480–492 (2019)

    CAS  Google Scholar 

  23. J.W. Yoon, J.H. Back, S.B. Jung, Effect of surface finish metallization on mechanical strength of Ag sintered joint. Microelectron. Eng. 198, 15–21 (2018)

    CAS  Google Scholar 

  24. P. Agyakwa, J. Dai, J. Li, B. Mouawad, L. Yang, M. Corfield, C.M. Johnson, Three-dimensional damage morphologies of thermomechanically deformed sintered nanosilver die attachments for power electronics modules. J. Microsc. (2019). https://doi.org/10.1111/jmi.12803

    Article  Google Scholar 

  25. I.L. Regalado, J.J. Williams, S. Joshi, E.M. Dede, Y. Liu, N. Chawla, X-ray microtomography of thermal cycling damage in sintered nano-silver solder joints. Adv. Eng. Mater. 21(3), 1801029 (2019)

    CAS  Google Scholar 

  26. J.J. Williams, I.L. Regalado, L. Liu, S. Joshi, N. Chawla, Effect of component flexibility during thermal cycling of sintered nano-silver joints by X-ray microtomography. J. Electron. Mater. 49, 1–4 (2019)

    Google Scholar 

  27. Y. Tan, X. Li, G. Chen, Q. Gao, G.Q. Lu, X. Chen, Effects of thermal aging on long-term reliability and failure modes of nano-silver sintered lap-shear joint. Int. J. Adhes. Adhes. 97, 102488 (2019)

    Google Scholar 

  28. T.E. Graedel, Corrosion mechanisms for silver exposed to the atmosphere. J. Electrochem. Soc. 139(7), 1963–1970 (1992)

    CAS  Google Scholar 

  29. J.L. Wang, L. Luan, Z.G. Zhang, Q.L. Ma, Corrosion behavior of simulated song dynasty silver product in NaCl solution. Rare Metal. Mat. Eng. 42(7), 1418–1422 (2013)

    CAS  Google Scholar 

  30. D.W. Rice, P. Peterson, E.B. Rigby, P.B.P. Phipps, R.J. Cappell, R. Tremoureux, Atmospheric corrosion of copper and silver. J. Electrochem. Soc. 128(2), 275–284 (1981)

    CAS  Google Scholar 

  31. M. Wang, J. Wang, W. Ke, Corrosion behavior of Sn-3.0 Ag-0.5 Cu lead-free solder joints. Microelectron. Reliab. 73, 69–75 (2017)

    CAS  Google Scholar 

  32. B. Liao, H. Cen, Z. Chen, X. Guo, Corrosion behavior of Sn-3.0 Ag-0.5 Cu alloy under chlorine-containing thin electrolyte layers. Corros. Sci. 143, 347–361 (2018)

    CAS  Google Scholar 

  33. M. Fayeka, M.A. Fazal, A. Haseeb, Effect of aluminum addition on the electrochemical corrosion behavior of Sn–3Ag–0.5 Cu solder alloy in 3.5 wt% NaCl solution. J. Mater. Sci. 27(11), 12193–12200 (2016)

    CAS  Google Scholar 

  34. R.K. Kaushik, U. Batra, J.D. Sharma, Aging induced structural and electrochemical corrosion behaviour of Sn-1.0 Ag-0.5 Cu and Sn-3.8 Ag-0.7 Cu solder alloys. J. Alloys Comp-d. 745, 446–454 (2018)

    CAS  Google Scholar 

  35. B.X. Vuong, N.S.H. Vu, T.D. Manh, M. Vaka, D.X. Du, N.D. Nam, Role of cerium in microstructure and corrosion properties of Sn-1.0 Ag solder alloys. Mater. Lett. 228, 309–313 (2018)

    CAS  Google Scholar 

  36. C.D. Lai, Generalized Weibull Distributions//Generalized Weibull Distributions (Springer, Berlin, 2014), pp. 23–75

    Google Scholar 

  37. R. Danzer, A general strength distribution function for brittle materials. J. Eur. Ceram. Soc. 10(6), 461–472 (1992)

    Google Scholar 

  38. J. Wang, X. Long, Y. Yao, Effects of aging temperature on tensile and fatigue behavior of Sn-3.0 Ag-0.5 Cu solder joints. J. Mater. Sci. 28(19), 14884–14892 (2017)

    CAS  Google Scholar 

  39. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  40. M.J. Frye, G.A. Morris, Analysis of flexibly connected steel frames. Can. J. Civil. Eng. 2(3), 280–291 (1975)

    Google Scholar 

  41. M. Romanoff, Mater. Perform. 21, 1–10 (1982)

    Google Scholar 

  42. J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3(1), 6 (2005)

    Google Scholar 

  43. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. 3(1), 95–101 (2007)

    CAS  Google Scholar 

  44. N.R. Panyala, E.M. Peña-Méndez, J. Havel, Silver or silver nanoparticles: a hazardous threat to the environment and human health. J. Appl. Biomed. 6, 117–129 (2008)

    CAS  Google Scholar 

  45. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2(1), 32 (2012)

    Google Scholar 

  46. S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19(7), 975–983 (2005)

    CAS  Google Scholar 

  47. K.F. Soto, L.E. Murr, K.M. Garza, Cytotoxic responses and potential respiratory health effects of carbon and carbonaceous nanoparticulates in the Paso del Norte airshed environment. Int. J. Environ. Res. Publ. Health. 5(1), 12–25 (2008)

    CAS  Google Scholar 

  48. C.M. Wood, R.C. Playle, C. Hogstrand, Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem. 18(1), 71–83 (1999)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (No. 11772257), Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX201948), Fundamental Research Funds for the Central Universities (No. G2019KY05212) and the Alexander von Humboldt Foundation (Fellowship for Experienced Researchers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Yao, Y. & Zhao, F. Corrosion effects on sintered nano-silver joints and the secondary biological hazards. J Mater Sci: Mater Electron 31, 7649–7662 (2020). https://doi.org/10.1007/s10854-020-03301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03301-1

Navigation