Skip to main content
Log in

Enhanced thermoelectric properties of Sr0.9La0.1TiO3 ceramics fabricated by SPS with nanosized Ti addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sr0.9La0.1TiO3/20 wt%Ti ceramics with enhanced thermoelectric properties were prepared by spark plasma sintering (SPS) and nanosized Ti metal powders were used as additive. In the sintering process, a large proportion of Ti was oxidized, promoting the volatilization of lattice oxygen and creating more \(V_{{\text{O}}}^{ \cdot \cdot }\). Part of sintering aid Bi2O3 was reduced to metal Bi particles which facilitate carriers transport by forming an electron transport network. These two factors contribute to electrical resistivity reduction. The lowest electrical resistivity of ρ389K = 4.0 × 10–4 Ω cm and ρ1120K = 1.5 × 10–3 Ω cm and the maximum PF value PF389K = 1.08 mW/m/K2 were obtained. This work demonstrates that nanosized Ti addition together with Bi2O3 sintering aid in SPS process enhances the thermoelectric performance of Sr0.9La0.1TiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116(19), 12123 (2016)

    Article  CAS  Google Scholar 

  2. M.A. Korzhuev, I.V. Katin, On the placement of thermoelectric generators in automobiles. J. Electron. Mater. 39(9), 1390 (2010)

    Article  CAS  Google Scholar 

  3. C.L. Gong, G.G. Dong, J.X. Hu et al., Effect of reducing annealing on the microstructure and thermoelectric properties of La–Bi co-doped SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28(19), 14893 (2017)

    CAS  Google Scholar 

  4. F. Kenjiro, M. Tadashi, N. Kazuo, High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40(7R), 4644 (2001)

    Google Scholar 

  5. J. Khaliq, C.C. Li, K. Chen et al., Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La2Ti2O7. J. Appl. Phys. 117(7), 075101 (2015)

    Article  Google Scholar 

  6. T.B. Maria, M. Filippo, A.T. Umberto et al., Effect of nanostructure on the thermal conductivity of La-doped SrTiO3. J. Eur. Ceram. Soc. 34(2), 307 (2014)

    Article  Google Scholar 

  7. K. Yoshiaki, M. Ken-ichi, K. Kazumi, Enhanced thermopower in nano-SrTiO3 via rare earth doping. J. Electron. Mater. 44(6), 1773 (2015)

    Article  Google Scholar 

  8. A. Kikuchi, N. Okinaka, T. Akiyama, A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scr. Mater. 63(4), 407 (2010)

    Article  CAS  Google Scholar 

  9. T. Teranishi, Y. Ishikawa, H. Hayashi et al., Thermoelectric efficiency of reduced SrTiO3 ceramics modified with La and Nb. J. Am. Ceram. Soc. 96(9), 2852 (2013)

    Article  CAS  Google Scholar 

  10. Z.L. Lu, H.R. Zhang, W. Lei et al., High-figure-of-merit thermoelectric La-doped A-site-deficient SrTiO3 ceramics. Chem. Mater. 28(3), 925 (2016)

    Article  CAS  Google Scholar 

  11. M. Wolf, K. Menekse, A. Mundstock et al., Low thermal conductivity in thermoelectric oxide-based multiphase composites. J. Mater. Sci. 48(11), 7551 (2019)

    CAS  Google Scholar 

  12. M. Jerič, J. de Boor, J. Zavašnik et al., Lowering the thermal conductivity of Sr(Ti0.8Nb0.2)O3 by SrO and CaO doping: microstructure and thermoelectric properties. J. Mater. Sci. 51(16), 7660 (2016)

    Article  Google Scholar 

  13. D. Srivastava, C. Norman, F. Azough et al., Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloy Compd. 731, 723 (2018)

    Article  CAS  Google Scholar 

  14. K. Park, J.S. Son, S.I. Woo et al., Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles. J. Mater. Chem. 2(12), 4217 (2014)

    Article  CAS  Google Scholar 

  15. M.J. Qin, F. Gao, G.G. Dong et al., Microstructure characterization and thermoelectric properties of Sr0.9La0.1TiO3 ceramics with nano-sized Ag as additive. J. Alloy Compd. 762, 80 (2018)

    Article  CAS  Google Scholar 

  16. M.J. Qin, F. Gao, M. Wang et al., Fabrication and high-temperature thermoelectric properties of Ti-doped Sr0.9La0.1TiO3 ceramics. Ceram. Int. 42(15), 16644 (2016)

    Article  CAS  Google Scholar 

  17. M.J. Akhtar, Z.U.N. Akhtar, R.A. Jackson et al., Computer simulation studies of strontium titanate. J. Am. Ceram. Soc. 78(2), 421 (1995)

    Article  CAS  Google Scholar 

  18. P.P. Shang, B.P. Zhang, J.F. Li et al., Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol-gel process and spark plasma sintering. Solid State Sci. 12(8), 1341 (2010)

    Article  CAS  Google Scholar 

  19. L.L. Li, X.Y. Qin, Y.F. Liu et al., Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics. Chin. Phys. B 24(6), 067202 (2015)

    Article  Google Scholar 

  20. C. Wu, J. Li, Y.C. Fan et al., The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. J. Alloy Compd. 786, 884 (2019)

    Article  CAS  Google Scholar 

  21. N. Okinaka, L.H. Zhang, T. Akiyama, Thermoelectric properties of rare earth-doped SrTiO3 using combination of combustion synthesis (CS) and spark plasma sintering (SPS). ISIJ Int. 50(9), 1300 (2010)

    Article  CAS  Google Scholar 

  22. M. Ito, N. Ohira, Effects of TiB2 addition on spark plasma sintering and thermoelectric performance of Y-doped SrTiO3 synthesized by polymerized complex process. Composites B 88, 108 (2016)

    Article  CAS  Google Scholar 

  23. P. Roy, V. Pal, T. Maiti, Effect of spark plasma sintering (SPS) on the thermoelectric properties of SrTiO3:15 at% Nb. Ceram. Int. 43(15), 12809 (2017)

    Article  CAS  Google Scholar 

  24. A. Kikuchi, L.H. Zhang, N. Okinaka et al., Effects of sintering temperature on thermoelectric device of La-doped strontium titanate in the combination of combustion synthesis and spark plasma sintering. Mater. Trans. 50(11), 2675 (2009)

    Article  CAS  Google Scholar 

  25. Y. Lin, C. Norman, D. Srivastava et al., Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7(29), 15898 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672219, 51702259), China-Poland International Collaboration Fund of National Natural Science Foundation of China (No. 51961135301), the Fundamental Research Funds for the Central Universities (Nos. 3102019GHJD001, 3102019MS0406), and the Basic Research Program of Shenzhen (No. JCYJ20170306155944271) and sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX201827). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for the measurements of SEM and EDS and valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Lou, Z., Shi, Z. et al. Enhanced thermoelectric properties of Sr0.9La0.1TiO3 ceramics fabricated by SPS with nanosized Ti addition. J Mater Sci: Mater Electron 31, 6919–6926 (2020). https://doi.org/10.1007/s10854-020-03255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03255-4

Navigation