Skip to main content

Advertisement

Log in

Reducing light reflection by processing the surface of silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study discussed a surface processing technique for improving the energy conversion rate of solar cells with silicon as the substrate. The technique involves texturing the surface of a silicon substrate and coating it with an antireflective layer to enhance its antireflective property and thereby its photoelectric conversion efficiency. Double surface texturing (DST) texture was formed through photolithography and anisotropic wet etching, and radio frequency magnetron sputtering was performed to deposit the SiO2/TiO2 double-layer antireflective coating to reinforce the surface texture of a silicon solar cell. Subsequently, a scanning electron microscope was employed to analyze the DST texture before and after the surface was coated with a double-layer antireflective coating (ARC). An UV–VIS spectrophotometer attached with an integrating sphere was then applied to measure the light absorption rate of the processed surface at different wavelengths. After optimum DST and double-layer ARC treatments, the average reflectance within the visible light reduce to 9.94%, which means the absorption of incident light into the absorption layer was enhanced to improve the energy conversion efficiency of silicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Hoagland, Sci. Am. 273, 170–173 (1995)

    Google Scholar 

  2. F.Y. Zhu, X.S. Zhang, H.X. Zhang, Sci. China Technol. Sci. 58, 381–389 (2015)

    Article  CAS  Google Scholar 

  3. J. Zhao, A. Wang, M.A. Green, Conference Record of the Twenty First IEEE Photovoltaic Specialists Conference 1, 333–335 (1990)

    Article  Google Scholar 

  4. A. Suhandi, Y.R. Tayubi, F.C. Wibowo, P. Arifin, J. Phys. Conf. Ser. 877, 012068 (2017)

    Article  Google Scholar 

  5. N. Tucher, J. Eisenlohr, P. Kiefel, H. Gebrewold, O. Höhn, H. Hauser, C. Müller, J.C. Goldschmidt, B. Bläsi, Proc. SPIE 9898, id. 98980F (2016)

  6. S. Kwon, J. Yi, S. Yoon, J.S. Lee, D. Kim, Curr. Appl. Phys. 9, 1310–1314 (2009)

    Article  Google Scholar 

  7. A.A. Fashina, K.K. Adama, M.G. Zebaze Kana, W.O. Soboyejo, Adv. Mater. Res. 1132, 144–159 (2016)

    Article  Google Scholar 

  8. Q. Tan, L. Tang, H. Mao, Y. Chen, Y. Ren, F. Yuan, W. Ou, J. Xiong, Mater. Lett. 164, 613–617 (2016)

    Article  CAS  Google Scholar 

  9. A.B. Roy, A. Dhar, M. Choudhuri, S. Das, S.M. Hossain, A. Kundu, Nanotechnology 29, 1–12 (2016)

    Google Scholar 

  10. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, Adv. Opt. Mater. 3, 147–164 (2015)

    Article  CAS  Google Scholar 

  11. H. Savin, P. Repo, G. Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Nat. Nanotechnol. 10, 624–628 (2015)

    Article  CAS  Google Scholar 

  12. G.Y. Ayvazyan, R.N. Barseghyan, Proc. Eng. Acad. Armen. 12, 355–358 (2015)

    Google Scholar 

  13. G.Y. Ayvazyan, R.N. Barseghyan, M.V. Katkov, M.S. Lebedev, Proc. Eng. Acad. Armen. 14, 474–477 (2017)

    Google Scholar 

  14. X. Tan, W. Yan, Y. Tu, C. Deng, Opt. Express 25(13), 14725–14731 (2017)

    Article  CAS  Google Scholar 

  15. X. Yan, N. Chen, F.B. Suhaimi, L. Zhang, X. Gong, X. Zhang, S. Duttagupta, Appl. Opt. 58(15), E1–E6 (2019)

    Article  CAS  Google Scholar 

  16. B.W. Schneider, N.N. Lal, S. Baker-Finch, T.P. White, Opt. Express 22(S6), A1422–A1430 (2014)

    Article  CAS  Google Scholar 

  17. J. Zhao, A. Wang, E. Abbaspour-Sani, F. Yun, M.A. Green, in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, pp. 1203–1206 (1996)

  18. M. Mesuel, in Proceedings of 19th European Solar Energy Conference, Paris, pp. 3581–3586 (2004)

  19. Z. Chen, P. Sana, J. Salami, A. Rohatgi, IEEE Trans. Electron. Devices 40(6), 1161–1165 (1993)

    Article  CAS  Google Scholar 

  20. S.K. Dhungel, J. Yoo, K. Kim, S. Jung, S. Ghosh, J. Yi, J. Korean Phys. Soci. 49(3), 885–889 (2006)

    CAS  Google Scholar 

  21. J. Zhao, M.A. Green, I.E.E.E. Trans, Electron Devices 38, 1925–1934 (1991)

    Article  CAS  Google Scholar 

  22. S.H. Woo, C.K. Hwangbo, Appl. Opt. 45(7), 1447–1455 (2006)

    Article  CAS  Google Scholar 

  23. S.E. Lee, S.W. Choi, J. Yi, Thin Solid Films 376, 208–213 (2006)

    Article  Google Scholar 

  24. C.T. Sah, Solid State Electron. 31, 451–457 (1984)

    Google Scholar 

  25. J. Zhao, A. Wang, M.A. Green, S.R. Wenham, IEEE 90, 399–401 (1991)

    Google Scholar 

  26. G.T.A. Kovacs, N.I. Maluf, K.E. Petersen, Proc. IEEE 86(8), 1536–1551 (1998)

    Article  CAS  Google Scholar 

  27. D.L. Kendall, Appl. Phys. Lett. 26, 195–198 (1975)

    Article  CAS  Google Scholar 

  28. H.J. Hovel, Solar Cells, Semiconductors and Semimetals, vol. 11 (Academic Press, New York, 1975)

    Google Scholar 

  29. X. Hao, X. Fan, Z. Wang, M. Wang, Mater. Lett. 51, 245 (2001)

    Article  CAS  Google Scholar 

  30. Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, T. Saiki, Appl. Phys. Lett. 105(3), 031907 (2014)

    Article  Google Scholar 

  31. M. Ardron, N. Weston, D. Hand, Appl. Surf. Sci. 313, 123–131 (2014)

    Article  CAS  Google Scholar 

  32. E. Blesso, Y. Vidhya, N.J. Vasa, J. Laser Micro Nanoeng. 12, 222–229 (2017)

    CAS  Google Scholar 

  33. H. Wang, P. Kongsuwan, G. Satoh, Y.L. Yao, in Proceedings of the 2010 International Manufacturing Science and Engineering Conference, MSEC2010-34271, Erie, 2010.

  34. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported as a project of the I-Shou University, Taiwan, R.O.C. under Grants ISU108-01-05A, and the Ministry of Science and Technology, Taiwan R.O.C., under Grant MOST106-2918-I-214-001, MOST106-2221-E-214-036 and MOST108-2221-E-214-028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Sheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, SH., Lin, YS., Tseng, TK. et al. Reducing light reflection by processing the surface of silicon solar cells. J Mater Sci: Mater Electron 31, 7616–7622 (2020). https://doi.org/10.1007/s10854-020-03253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03253-6

Navigation