Polydopamine-coated gold nanoparticles used as modifier of the electron transport layer for PTB7:PC71BM polymer solar cells

Abstract

Polydopamine (PDA)-coated gold nanoparticles (Au@PDA) were used as electronic transport layer (ETL) modifiers in PTB7:PC71BM polymer solar cells. PDA can effectively modify the surface of gold nanoparticles (Au NPs) and improve the stability of them. In addition, PDA also effectively binds to ZnO ETL, reducing surface defect and improving the combination between the interface layer and the active layer. In this study, AuNPs with particle size of about 30 nm was prepared by Frens reduction method, and then the dopamine (DA) self-polymerized on the surface of them to obtain a core–shell structural material Au@PDA. By regulating the polymerization time of DA, different PDA shell thickness was obtained. The Au@PDA was introduced into ZnO ETL to generate local plasmon resonance adsorption. When dopamine polymerized for an hour, the short current density of the modified solar cells reached 13.98 mA/cm2, and the power conversion efficiency reached 6.03%, which was 130% of the device without Au@PDA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)

    Article  Google Scholar 

  2. 2.

    S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B. 82(24), 245207 (2010)

    Article  Google Scholar 

  3. 3.

    L. Zhao et al., Two effects of 1,8-diiodooctane on PTB7-Th:PC71BM polymer solar cells. Org. Electron. 34, 188–192 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Zang et al., Effect of active layer thickness on the performance of polymer solar cells based on a highly efficient donor material of PTB7-Th. J. Phys. Chem. C 122(29), 16532–16539 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    P. Morvillo et al., Effect of the active layer thickness on the device performance of polymer solar cells having [60]PCBM and [70]PCBM as electron acceptor. Energy Procedia 31, 69–73 (2012)

    CAS  Article  Google Scholar 

  6. 6.

    Y.H. Jang et al., Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 116(24), 14982–15034 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    X. Ren et al., High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 12(37), 5200–5207 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    M. Yao et al., Performance improvement of polymer solar cells by surface-energy-induced dual plasmon resonance. ACS Appl. Mater. Interfaces 8(9), 6183–6189 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    W.C.H. Choy, R. Xingang, Plasmon-electrical effects on organic solar cells by incorporation of metal nanostructures. IEEE J. Sel. Top. Quantum Electron. 22(1), 1–9 (2016)

    Article  Google Scholar 

  10. 10.

    X. Chen et al., Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl. Phys. Lett. 93(12), 344 (2008)

    Google Scholar 

  11. 11.

    T.D. Heidel et al., Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Appl. Phys. Lett. 91(9), 093506 (2007)

    Article  Google Scholar 

  12. 12.

    S. Farooq, D. Rativa, R.E. de Araujo, Optimizing the sensing performance of SiO2-Au nanoshells. Plasmonics 14(6), 1519–1526 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    A. Urrutia et al., Optical fiber sensors based on gold nanorods embedded in polymeric thin films. Sens. Actuators B 255, 2105–2112 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    H. Heidarzadeh et al., Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. Appl. Opt. 55(7), 1779–1785 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    W. Ye et al., Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl. Catal. B 181, 371–378 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    W. Ye et al., Ultrathin polydopamine film coated gold nanoparticles: a sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole. Analyst 142(18), 3459–3467 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    J.G. Wang et al., Mussel-inspired polydopamine functionalized plasmonic nanocomposites for single-particle catalysis. ACS Appl. Mater. Interfaces 9(3), 3016–3023 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    J. Miao et al., Mussel-inspired polydopamine-functionalized graphene as a conductive adhesion promoter and protective layer for silver nanowire transparent electrodes. Langmuir 32(21), 5365–5372 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    C.K.K. Choi et al., Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties. Nanoscale 9(43), 16968–16980 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (11475017). The authors wish to thank the CPEM characterization of NenoVision s.r.o and Shanghai NTI Co. Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luting Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Yan, L., Zhu, Y. et al. Polydopamine-coated gold nanoparticles used as modifier of the electron transport layer for PTB7:PC71BM polymer solar cells. J Mater Sci: Mater Electron 31, 6698–6705 (2020). https://doi.org/10.1007/s10854-020-03226-9

Download citation