Skip to main content
Log in

Optical properties, microstructure, and multifractal analyses of ZnS thin films obtained by RF magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The morphology, structure and optical properties of zinc sulfide (ZnS) thin films prepared through radio-frequency (RF) magnetron sputtering have been analyzed using atomic force microscopy (AFM), UV–Vis–NIR spectrophotometry, X-ray diffraction, and multifractal analyses. The X-ray diffraction patterns revealed that all ZnS thin films show a single peak at around 29.6°, which has been ascribed to the (111) planes of sphalerite phase, indicating that the growth direction of the films is the [111] direction. UV–Vis–NIR transmittance spectra were used to determine the refractive index of the samples, their thickness, and their band gap energy, showing the optical and semiconductor properties a clear dependence of the film thickness. Finally, ZnS thin films were characterized and analyzed by atomic force microscopy (AFM) measurements and multifractal analyses for a complex and precise interpretation of the 3-D surface microtexture characteristics. The multifractal examinations of the samples revealed a particular distribution at the nanometric level associated with multifractal surface characteristics. These experimental results are corroborated, presented, and discussed together with the essential stereometric parameters of the thin films. The combination of the different experimental information and the comprehensive stereometric and multifractal analyses provide new and deeper insight into the ZnS thin films that would be exploited to develop novel micro-topography models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.M. Palve, Deposition of zinc sulfide thin films from Zinc(II) thiosemicarbazones as single molecular precursors using aerosol assisted chemical vapor deposition technique. Front. Mater. 6, 46 (2019). https://doi.org/10.3389/fmats.2019.00046

    Article  Google Scholar 

  2. V.K. Ashith, K. Gowrish Rao, Structural and optical properties of ZnS thin films by SILAR technique obtained by acetate precursor. IOP Conf. Ser. Mater. Sci. Eng. 360(1), 012058 (2018). https://doi.org/10.1088/1757-899X/360/1/012058

    Article  Google Scholar 

  3. P.E. Agbo, P.A. Nwofe, L.O. Odo, Analysis on energy bandgap of zinc sulphide (ZnS) thin films grown by solution growth technique. Chalcogenide Lett. 14(8), 357–363 (2017)

    CAS  Google Scholar 

  4. G. Arandhara, J. Bora, P.K. Saikia, Effect of pH on the crystallite size, elastic properties and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Chem. Phys. Mater. (2020). https://doi.org/10.1016/j.matchemphys.2019.122277

    Article  Google Scholar 

  5. P.O. Offor, B.A. Okorie, C.D. Lokhande, P.S. Patil, F.I. Ezema, A.D. Omah, V.S. Aigbodion, B.A. Ezekoye, I.C. Ezema, The properties of spray-deposited zinc sulfide thin films using trisodium citrate complexant. Int. J. Adv. Manuf. Technol. 95(5–8), 1849–1857 (2018). https://doi.org/10.1007/s00170-017-1326-6

    Article  Google Scholar 

  6. A. Jesu Jebathew, M. Karunakaran, K.D.A. Kumar, S. Valanarasu, V. Ganesh, S. Mohd Shkir, A.K. AlFaify, Effect of novel Nd3+ doping on physical properties of nebulizer spray pyrolysis fabricated ZnS thin films for optoelectronic technology. Phys B 572, 109–116 (2019). https://doi.org/10.1016/j.physb.2019.07.042

    Article  CAS  Google Scholar 

  7. K. Ben Bacha, N. Bitri, H. Bouzouita, Effect of annealing parameters on structural and morphological properties of sprayed ZnS thin films. Optik (Stuttg) 127(5), 3100–3104 (2016). https://doi.org/10.1016/j.ijleo.2015.12.083

    Article  CAS  Google Scholar 

  8. A. Azmand, H. Kafashan, Al-doped ZnS thin films: physical and electrochemical characterizations. J. Alloys Compd. 779, 301–313 (2019). https://doi.org/10.1016/j.jallcom.2018.11.268

    Article  CAS  Google Scholar 

  9. O. Toma, L. Ion, S. Iftimie, V.A. Antohe, A. Radu, A.M. Raduta, D. Manica, S. Antohe, Physical properties of rf-sputtered ZnS and ZnSe thin films used for double-heterojunction ZnS/ZnSe/CdTe photovoltaic structures. Appl. Surf. Sci. 478, 831–839 (2019). https://doi.org/10.1016/j.apsusc.2019.02.032

    Article  CAS  Google Scholar 

  10. S.R. Chalana, V.S. Kavitha, R. Reshmi Krishnan, V.P. Mahadevan Pillai, Tailoring the visible emissions in ZnS: Mn films for white light generation. J. Alloys Compd. 771, 721–735 (2019). https://doi.org/10.1016/j.jallcom.2018.08.275

    Article  CAS  Google Scholar 

  11. S. Chen, R. Yu, L. Song, R. Zhang, X. Cao, B. Wang, P. Zhang, Effect of low temperature vulcanization time on the structure and optical properties of ZnS thin films. Appl. Surf. Sci. 498, 143876 (2019). https://doi.org/10.1016/j.apsusc.2019.143876

    Article  CAS  Google Scholar 

  12. K. Yang, B. Li, G. Zeng, Effects of temperature on properties of ZnS thin films deposited by pulsed laser deposition. Superlattices Microstruct. 130, 409–415 (2019). https://doi.org/10.1016/j.spmi.2019.05.009

    Article  CAS  Google Scholar 

  13. M. Sathishkumar, M. Saroja, M. Venkatachalam, Influence of (Cu, Al) doping concentration on the structural, optical and antimicrobial activity of ZnS thin films prepared by Sol-Gel dip coating techniques. Optik (Stuttg) 182, 774–785 (2019). https://doi.org/10.1016/j.ijleo.2019.02.014

    Article  CAS  Google Scholar 

  14. K.C. Kumar, S. Kaleemulla, Effect of Ni incorporation on structural, optical and magnetic properties of electron beam evaporated ZnS thin films. J. Phys. Chem. Solids 135, 109028 (2019). https://doi.org/10.1016/j.jpcs.2019.05.025

    Article  CAS  Google Scholar 

  15. A.M. Al-Diabat, N.M. Ahmed, M.R. Hashim, M.A. Almessiere, Growth of ZnS thin films using chemical spray pyrolysis technique. Mater. Today Proc. 17, 912–920 (2019). https://doi.org/10.1016/j.matpr.2019.06.390

    Article  CAS  Google Scholar 

  16. M. Shobana, S.R. Meher, Effect of cobalt doping on the structural, optical and magnetic properties of sol-gel derived ZnS nanocrystalline thin films and ab initio studies. Thin Solid Films 683, 97–110 (2019). https://doi.org/10.1016/j.tsf.2019.05.037

    Article  CAS  Google Scholar 

  17. S.M. Mosavi, H. Kafashan, Physical properties of Cd-doped ZnS thin films. Superlattices Microstruct. 126, 139–149 (2019). https://doi.org/10.1016/j.spmi.2018.12.002

    Article  CAS  Google Scholar 

  18. A. Jafari-Rad, H. Kafashan, Preparation and characterization of electrochemically deposited nanostructured Ti-doped ZnS thin films. Ceram. Int. 45(17), 21413–21422 (2019). https://doi.org/10.1016/j.ceramint.2019.07.130

    Article  CAS  Google Scholar 

  19. A.J. Jebathew, M. Karunakaran, K.D. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, I.S. Yahi, H.Y. Zahran, A. Kathalingam, An effect of Gd3+ doping on core properties of ZnS thin films prepared by nebulizer spray pyrolysis (NSP) method. Phys. B Condens. Matter. 574, 411674 (2019). https://doi.org/10.1016/j.physb.2019.411674

    Article  CAS  Google Scholar 

  20. A. Axelevitch, B. Apter, Preparation and study of doped ZnS thin films. Microelectron. Eng. 170, 39–43 (2017). https://doi.org/10.1016/j.mee.2016.12.027

    Article  CAS  Google Scholar 

  21. F.M. Mwema, E.T. Akinlabi, O.P. Oladijo, J.D. Majumdar, Effect of varying low substrate temperature on sputtered aluminium films. Mater. Res. Express 6(5), 056404 (2019). https://doi.org/10.1088/2053-1591/ab014a

    Article  CAS  Google Scholar 

  22. J.E. Greene, Review Article: tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J. Vac. Sci. Technol. A 35(5), 05C204 (1800s). https://doi.org/10.1116/1.4998940

    Article  CAS  Google Scholar 

  23. T.K. Pathak, V. Kumar, L.P. Purohit, H.C. Swart, R.E. Kroon, Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering. Phys. E Low-Dimensional Syst. Nanostructures 84, 530–536 (2016). https://doi.org/10.1016/j.physe.2016.06.020

    Article  CAS  Google Scholar 

  24. A. Le Donne, D. Cavalcoli, R.A. Mereu, M. Perani, L. Pagani, M. Acciarri, S. Binetti, Study of the physical properties of ZnS thin films deposited by RF sputtering. Mater. Sci. Semicond. Process. 71, 7–11 (2017). https://doi.org/10.1016/j.mssp.2017.06.042

    Article  CAS  Google Scholar 

  25. F. M. Mwema, E. T. Akinlabi, O. P. Oladijo, Influence of sputtering power on surface topography , microstructure and mechanical properties of aluminum thin films, in Proc. of the Eighth Intl. Conf. on Advances in Civil, Structural and Mechanical Engineering—CSM 2019, 2019, pp. 5–9. https://doi.org/10.15224/978-1-63248-170-2-02

  26. F.M. Mwema, E.T. Akinlabi, O.P. Oladijo, Two-dimensional fast fourier transform analysis of surface microstructures of thin aluminium films prepared by radio-frequency (RF) magnetron sputtering. Mater. Sci. Eng. Lect. Notes Mech. Eng. Adv. (2019). https://doi.org/10.1007/978-981-13-8297-0_27

    Article  Google Scholar 

  27. R. Zhang, B. Wang, L. Wei, Influence of RF power on the structure of ZnS thin films grown by sulfurizing RF sputter deposited ZnO. Mater. Chem. Phys. 112(2), 557–561 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.089

    Article  CAS  Google Scholar 

  28. J. Kim, C. Park, S.M. Pawar, A.I. Inamdar, Y. Jo, J. Han, J.P. Hong, Y.S. Park, D.Y. Kim, W. Jung, H. Kim, H. Im, Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 566, 88–92 (2014). https://doi.org/10.1016/j.tsf.2014.07.024

    Article  CAS  Google Scholar 

  29. P. Chelvanathan, Y. Yusoff, F. Haque, M. Akhtaruzzaman, M.M. Alam, Z.A. Alothman, M.J. Rashid, K. Sopian, N. Amin, Growth and characterization of RF-sputtered ZnS thin film deposited at various substrate temperatures for photovoltaic application. Appl. Surf. Sci. 334, 138–144 (2015). https://doi.org/10.1016/j.apsusc.2014.08.155

    Article  CAS  Google Scholar 

  30. V.L. Gayou, B. Salazar-Hernandez, M.E. Constantino, E.R. Andrés, T. Díaz, R.D. Macuil, M.R. López, Structural studies of ZnS thin films grown on GaAs by RF magnetron sputtering. Vacuum 84(10), 1191–1194 (2010). https://doi.org/10.1016/j.vacuum.2009.10.023

    Article  CAS  Google Scholar 

  31. P.K. Ghosh, S. Jana, S. Nandy, K.K. Chattopadhyay, Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique. Mater. Res. Bull. 42(3), 505–514 (2007). https://doi.org/10.1016/j.materresbull.2006.06.019

    Article  CAS  Google Scholar 

  32. Ş. Ţălu, Micro and nanoscale characterization of three dimensional surfaces Basics and applications (Napoca Star Publishing House, Cluj-Napoca, Romania, 2015)

    Google Scholar 

  33. A.G. Korpi, Ş. Ţălu, M. Bramowicz, A. Arman, S. Kulesza, B. Pszczolkowski, S. Jurečka, M. Mardani, C. Luna, P. Balashabadi, S. Rezaee, S. Gopikishan, Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Mater. Res. Express. 6, 086463 (2019). https://doi.org/10.1088/2053-1591/ab26be

    Article  CAS  Google Scholar 

  34. Ş. Ţălu, M. Bramowicz, S. Kulesza, V. Dalouji, S. Solaymani, S. Valedbagi, Fractal features of carbon–nickel composite thin films. Microsc. Res. Tech. 79(12), 1208–1213 (2016). https://doi.org/10.1002/jemt.22779

    Article  CAS  Google Scholar 

  35. R. Shakoury, S. Rezaee, F. Mwema, C. Luna, K. Ghosh, S. Jurečka, Ş. Ţălu, A. Arman, A.G. Korpi, Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Opt. Quantum Electron. 52, 95 (2020). https://doi.org/10.1007/s11082-019-2173-5

    Article  CAS  Google Scholar 

  36. Ş. Ţălu, S. Stach, A. Mendez, G. Trejo, M. Talu, Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J. Electrochem. Soc. 161, D44–D47 (2013). https://doi.org/10.1149/2.039401jes

    Article  CAS  Google Scholar 

  37. Ş. Ţălu, I.A. Morozov, R.P. Yadav, Multifractal analysis of sputtered indium tin oxide thin film surfaces. Appl. Surf. Sci. 484, 892–898 (2019). https://doi.org/10.1016/j.apsusc.2019.04.170

    Article  CAS  Google Scholar 

  38. X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, S. Talu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compounds 805, 229–236 (2019). https://doi.org/10.1016/j.jallcom.2019.07.081

    Article  CAS  Google Scholar 

  39. S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci. 33, 175–184 (2015). https://doi.org/10.1515/msp-2015-0036

    Article  CAS  Google Scholar 

  40. Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Surface morphology of titanium nitride thin films synthesised by DC reactive magnetron sputtering. Mater. Sci. 33(1), 137–143 (2015). https://doi.org/10.1515/msp-2015-0010

    Article  CAS  Google Scholar 

  41. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl. Phys. A 123(699), 1–13 (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  CAS  Google Scholar 

  42. F.M. Mwema, E. Akinlabi, P. Oladijo, The use of power spectrum density for surface characterization of thin films. Photoenergy Thin Film Mater. (2019). https://doi.org/10.1002/9781119580546.ch9

    Article  Google Scholar 

  43. D. Sobola, Ş. Ţălu, S. Solaymani, L. Grmela, Influence of scanning rate on quality of AFM image: study of surface statistical metrics. Microsc. Res. Tech. 80(12), 1328–1336 (2017). https://doi.org/10.1002/jemt.22945

    Article  Google Scholar 

  44. X. Tao Yin, D. Dastan, F. Yu Wu, J. Li, Facile synthesis of SnO2/LaFeO3-XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials (Basel, Switzerland) 9(8), 1163 (2019). https://doi.org/10.3390/nano9081163

    Article  CAS  Google Scholar 

  45. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16(12), 1214–1221 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  46. A.G. Korpi, S. Rezaee, C. Luna, Ş. Ţălu, A. Arman, A. Ahmadpourian, Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO2 thin films. Results in physics 7, 3349–3352 (2017). https://doi.org/10.1016/j.rinp.2017.08.018

    Article  Google Scholar 

  47. C. Luna, A.D. Cuan-Guerra, E.D. Barriga-Castro, N.O. Núñez, R. Mendoza-Reséndez, R., Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals. Mater. Res. Bull. 80, 44–52 (2016). https://doi.org/10.1016/j.materresbull.2016.03.029

    Article  CAS  Google Scholar 

  48. Mountains Map® 8 premium Software (Digital Surf, Besançon, France). https://www.digitalsurf.fr. Accessed 26 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rezaee.

Ethics declarations

Conflict of interest

Neither author has a financial or proprietary interest in any material or method mentioned. The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakoury, R., Arman, A., Ţălu, Ş. et al. Optical properties, microstructure, and multifractal analyses of ZnS thin films obtained by RF magnetron sputtering. J Mater Sci: Mater Electron 31, 5262–5273 (2020). https://doi.org/10.1007/s10854-020-03086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03086-3

Navigation