Skip to main content
Log in

Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic recoverable MnFe2O4/rGO nanocomposites were synthesized via a facile one-pot hydrothermal method. The microstructure, morphology, optical and magnetic property were characterized by X-ray diffraction, high-resolution transmission electron microscope, ultraviolet–visible spectroscopy, N2 adsorption–desorption technique, photoluminescence spectroscopy and vibrating sample magnetometer. The photo-Fenton degradation activity of the MnFe2O4/rGO composites was investigated using the methylene blue (MB) in aqueous solution under the simulated sunlight. The results show that MnFe2O4 nanoparticles with cubic spinel structure were loaded on the surface of rGO, possessing irregular ellipsoid with uniform particle size and good dispersion. The band gap of MnFe2O4/rGO is narrower than that of pure MnFe2O4 and exhibits redshift. The weak luminescence of MnFe2O4/rGO nanocomposites indicates the efficient separation of photoexcited electron/hole pairs. MnFe2O4/rGO nanocomposites display superior photo-Fenton degradation efficiency of MB, exhibit obvious room temperature ferromagnetism and can be readily recovered by external magnetic field. MnFe2O4/rGO nanocomposites exhibit the best degradation efficiency under the condition of pH 9, 0.5 mL H2O2 and 0.06 g mass fraction in photo-Fenton degradation of MB dye. The radical scavenger tests demonstrate that ·OH, e and h+ are the main active species and play a decisive role, and rGO plays a vital role in synergistic enhancement of photo-Fenton degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279 (2010)

    Google Scholar 

  2. G. Gao, W. Feng, W. Su, S. Wang, L. Chen, M. Li, C. Song, Int. J. Electrochem. Sci. 15, 1426 (2020)

    CAS  Google Scholar 

  3. M. Li, W. Feng, X. Wang, Int. J. Electrochem. Sci. 15, 526 (2020)

    CAS  Google Scholar 

  4. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, Water. Res. 139, 118 (2018)

    CAS  Google Scholar 

  5. W.H. Zhao, Z.Q. Wei, X.J. Wu, X. Wang, Mater. Sci. Semicond. Proc. 88, 173 (2018)

    CAS  Google Scholar 

  6. A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim, P. Singh, J. Ind. Eng. Chem. 67, 28 (2018)

    CAS  Google Scholar 

  7. W.H. Zhao, Z.Q. Wei, L. Zhang, X.J. Wu, X. Wang, Materials. 582, 1 (2019)

    Google Scholar 

  8. M. Mahendiran, J.J. Mathen, K.M. Racik, J. Madhavan, M.V.A. Raj, J. Mater. Sci. 30, 16099 (2019)

    CAS  Google Scholar 

  9. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520 (2014)

    CAS  Google Scholar 

  10. Y. Ma, X.L. Wang, Y.S. Jia, X.B. Chen, H.X. Han, C. Li, Chem. Rev. 114, 9987 (2014)

    CAS  Google Scholar 

  11. R.C. Sripriya, M. Mahendiran, J. Madahavan, M.V.A. Raj, Mater. Today 8, 310 (2019)

    CAS  Google Scholar 

  12. X. Li, J.G. Yu, J. Low, Y.P. Fang, J. Xiao, X.B. Chen, J. Mater. Chem. A. 3, 2485 (2015)

    CAS  Google Scholar 

  13. Y.X. Yan, H. Yang, Z. Yi, T. Xian, X.X. Wang, Environ. Sci. Pollut. Res. 26, 29020 (2019)

    CAS  Google Scholar 

  14. N. Sreelekha, K. Subramanyam, D. Amaranatha Reddy, G. Murali, K. Rahul Varma, R.P. Vijayalakshmi, Solid State Sci. 62, 71 (2016)

    CAS  Google Scholar 

  15. W.H. Zhao, Z.Q. Wei, X.D. Zhang, M.J. Ding, S.P. Huang, Mater. Res. Bull. 124, 110749 (2020)

    Google Scholar 

  16. Z.M. Wang, H. Ma, C. Zhang, J. Feng, S.Y. Pu, Y.M. Ren, Y. Wang, Chem. Eng. J. 34, 711 (2017)

    Google Scholar 

  17. S.P. Huang, Z.Q. Wei, X.J. Wu, J.W. Shi, Mater. Res. Express 7, 015025 (2020)

    CAS  Google Scholar 

  18. F.K. Lotgering, J. Phys.Chem. Solids. 25, 95 (1964)

    CAS  Google Scholar 

  19. H. Xu, X. Quan, L. Chen, Chemosphere. 217, 800 (2019)

    CAS  Google Scholar 

  20. S. Gautam, P. Shandilya, B. Priya, V. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Sep. Purif. Technol. 172, 498 (2017)

    CAS  Google Scholar 

  21. Z.M. Sun, G.Y. Yao, M.Y. Liu, S.L. Zheng, J. Taiwan. Inst. Chem. E. 71, 501 (2017)

    CAS  Google Scholar 

  22. V.T. Tran, D.T. Vu, Appl. Phys. A. 124, 675 (2018)

    Google Scholar 

  23. X. Peng, J. Qu, S. Tian, Y. Ding, X. Hai, B. Jiang, M. Wu, J. Qiu, Rsc. Adv. 6, 104549 (2016)

    CAS  Google Scholar 

  24. A. Chaudhary, A. Mohammad, S.M. Mobin, Mater. Sci. Eng. B 227, 136 (2018)

    CAS  Google Scholar 

  25. M.Q. Qiu, Z.X. Chen, Z.H. Yang, W.M. Li, Y. Tian, W.X. Zhang, Y.S. Xu, H.S. Cheng, Catal. Sci. Technol. 8, 2557 (2018)

    CAS  Google Scholar 

  26. J. Feng, Z.Q. Zhang, M.M. Gao, M.Z. Gu, J.X. Wang, W.J. Zeng, Y.Z. Lv, Y.M. Ren, Z.J. Fan, Mater. Chem. Phys. 223, 758 (2019)

    CAS  Google Scholar 

  27. N. Khadgi, Y. Li, A.R. Upreti, C. Zhang, W.L. Zhang, Y.M. Wang, D.W. Wang, Photochem. Photobiol. 92, 238 (2016)

    CAS  Google Scholar 

  28. S.N. Xiao, D.L. Pan, R. Liang, W.R. Dai, Q.T. Zhang, G.Q. Zhang, C.L. Su, H.X. Li, W. Chen, Appl. Catal. B 236, 304 (2018)

    CAS  Google Scholar 

  29. M. Bagherzadeh, R. Kaveh, Photochem. Photobiol. 94, 1210 (2018)

    CAS  Google Scholar 

  30. J.L. Jiang, X.X. He, J.F. Du, X.J. Pang, H. Yang, Z.Q. Wei, Mater. Lett. 220, 178 (2018)

    CAS  Google Scholar 

  31. T.T. Bi, H.Q. Fang, J.L. Jiang, X.X. He, X. Zhen, H. Yang, Z.Q. Wei, Z.F. Jia, J. Alloy. Compd. 787, 759 (2019)

    CAS  Google Scholar 

  32. Y. Huang, Y.L. Liang, Y.F. Rao, D.D. Zhu, J.J. Cao, Z.X. Shen, W.K. Ho, S.C. Lee, Sci. Technol. 51, 2924 (2017)

    CAS  Google Scholar 

  33. Y.D. Lu, Y.P. Feng, F.L. Wang, X.G. Zou, Z.F. Chen, P. Chen, H.J. Liu, Y.H. Su, Q.X. Zhang, G.G. Liu, J. Photochem. Photobiol. A 353, 10 (2018)

    CAS  Google Scholar 

  34. Y.L. Guo, L.L. Zhang, X.Y. Liu, B. Li, D. Tang, W.S. Liu, W.W. Qin, J. Mater. Chem. A. 4, 4044 (2016)

    CAS  Google Scholar 

  35. X. Huang, L. Liu, Z. Xi, H. Zheng, W. Dong, G. Wang, Mater. Chem. Phys. 231, 68 (2019)

    CAS  Google Scholar 

  36. A. Mishra, V. Sharma, T. Mohanty, B.K. Kuanr, J. Alloy. Compd. 790, 983 (2019)

    CAS  Google Scholar 

  37. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, J. Hazard. Mater. 270, 61 (2014)

    CAS  Google Scholar 

  38. N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Chem. Eng. J. 295, 391 (2016)

    Google Scholar 

  39. P.H. Luo, X.F. Guan, Y.L. Yu, X.Y. Li, Chem. Phys. Lett. 690, 129 (2017)

    CAS  Google Scholar 

  40. M.S. Cuevas, I. Oller, A. Agüera, J. Sánche-Pérez, S. Malato, Chem. Eng. J. 318, 161 (2017)

    Google Scholar 

  41. P.J. Wang, L.Q. Wang, Q. Sun, S.B. Qiu, Y. Liu, X.B. Zhang, X.L. Liu, L.H. Zheng, Mater. Lett. 183, 61 (2016)

    CAS  Google Scholar 

  42. X.L. Zhu, Z.Q. Wei, W.H. Zhao, X.D. Zhang, L. Zhang, X. Wang, J. Electron. Mater. 47, 6428 (2018)

    CAS  Google Scholar 

  43. W.H. Zhao, Z.Q. Wei, X.L. Zhu, X.D. Zhang, J.L. Jiang, Int. J. Mater. Res. 109, 405 (2018)

    CAS  Google Scholar 

  44. X.L. Zhu, Z.Q. Wei, L. Ma, J.H. Liang, X.D. Zhang, Mater. Sci. 43, 1 (2020)

    Google Scholar 

  45. Y.X. Yan, H. Yang, Z. Yi, T. Xian, R.S. Li, X.X. Wang, Desalin. Water Treat. 170, 349 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51261015), open fund of State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology (No. SYSJJ2018-20) and Hong Liu First-Class Disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Huang, S., Zhang, X. et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites. J Mater Sci: Mater Electron 31, 5176–5186 (2020). https://doi.org/10.1007/s10854-020-03077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03077-4

Navigation