Skip to main content
Log in

Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we optimised the molybdenum (Mo) back-contact layer for solar cell applications on stainless steel substrates using direct-current (dc) sputtering with varying sputtering powers (100 W to 500 W) and pressures (5 mTorr to 20 mTorr). We comparatively analysed the effectiveness of titanium (Ti) layer deposited using e-beam evaporation deposition and zinc oxide (ZnO) layer deposited using radio-frequency (RF) sputtering for barrier application with Mo. Structural characterisation of the optimised Mo films was carried out using XRD studies confirmed the (110) plane corresponding to the body-centred cubic (bcc) structure. Estimated Mo film parameters for films deposited on barrier layers were compared against films deposited on SS substrate without any barriers as these properties influence the prospective diffusion of Fe and Cr into the absorber layer. Surface characterisation of the deposited films was carried out using a scanning electron microscopy (SEM) to study the morphology of films, and energy-dispersive X-ray (EDX) to identify elemental presence to confirm the blockage of the impurities atoms through the film. Secondary ion mass spectroscopy (SIMS) was employed to study the depth profiles of films while atomic force microscopy (AFM) was used to characterise the topographical properties from the sputtered Mo film and analyse the grain properties of the films. A low resistivity value of 0.511 × 10–6 Ω m for Mo films on the reference glass substrate and 0.625 × 10–6 Ω m for the Mo film on ZnO barrier was measured using the four-point probe. We observed a further 40% reduction in impurities using annealed ZnO barrier combined with an optimised Mo layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U.S. EIA, Annual Energy Outlook 2019 with projections to 2050, Annu. Energy Outlook 2019 with Proj. to 2050. (2019).

  2. International Renewable Energy Agency, Renewable Power Generation Costs in 2018, (2019). https://doi.org/10.1007/SpringerReference_7300.

  3. A. International Energy, Renewables information 2004, IEA Stat. (2004), https://doi.org/10.1787/9789264099531-en.

  4. G. Lomax, M. Workman, T. Lenton, N. Shah, Reframing the policy approach to greenhouse gas removal technologies. Energy Policy. (2015). https://doi.org/10.1016/j.enpol.2014.10.002

    Article  Google Scholar 

  5. C. Paulson, Greenhouse Gas Control Technologies. In Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (2019). https://doi.org/10.1071/9780643105027.

  6. K.S. Lackner, CLIMATE CHANGE: A guide to CO2 sequestration. Science (2003). https://doi.org/10.1126/science.1079033

    Article  Google Scholar 

  7. J. Kemper, Biomass and carbon dioxide capture and storage: a review. Int. J. Greenh. Gas Control. (2015). https://doi.org/10.1016/j.ijggc.2015.06.012

    Article  Google Scholar 

  8. L.J. Cseke, S.D. Wullschleger, A. Sreedasyam, G. Trivedi, P.E. Larsen, F.R. Collart, in Carbon sequestration, ed. by L.J. Cseke Genomics and Breeding for Climate-Resilient Crops, vol. 2 (Springer, Berlin, 2013) https://doi.org/10.1007/978-3-642-37048-9_12.

    Chapter  Google Scholar 

  9. G.D. Soni, Advantages of green technology. Soc. Issue Environ. Probl. 39035(9), 1–5 (2014)

    Google Scholar 

  10. National Renewable Energy Laboratory, Learning About Renewable Energy, https://www.Nrel.Gov. (2017)

  11. F.V. Bekun, A.A. Alola, S.A. Sarkodie, Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2018.12.104

    Article  Google Scholar 

  12. M. Guarnieri, M. Liserre, T. Sauter, J.Y. Hung, Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. (2010). https://doi.org/10.1109/MIE.2010.935861

    Article  Google Scholar 

  13. M. Beaudin, H. Zareipour, A. Schellenberglabe, W. Rosehart, Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. (2010). https://doi.org/10.1016/j.esd.2010.09.007

    Article  Google Scholar 

  14. R. Foster, M. Ghassemi, A. Cota, A Solar Energy: Renewable Energy and the Environment, (CRC Press, Boca Raton, 2010)

    Google Scholar 

  15. J. Mohtasham, Review article-renewable energies. Energy Procedia 74, 1289–1297 (2015). https://doi.org/10.1016/j.egypro.2015.07.774

    Article  Google Scholar 

  16. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  Google Scholar 

  17. M. Beaudin, H. Zareipour, A. Schellenberg, W. Rosehart, Energy storage for mitigating the variability of renewable electricity sources. Energy Storage Smart Grids Plan. Oper. Renew. Var. Energy Resour. 2014. 14, 1–33 https://doi.org/10.1016/B978-0-12-410491-4.00001-4

    Article  Google Scholar 

  18. M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2016.11.102

    Article  Google Scholar 

  19. T. Kim, J.-H. Kim, T.E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong, T.-S. Kim, B.J. Kim, Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015). https://doi.org/10.1038/ncomms9547

    Article  CAS  Google Scholar 

  20. R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani-Assl, CIGS thin-film solar cells on steel substrates. Thin Solid Films 517, 2415–2418 (2009). https://doi.org/10.1016/j.tsf.2008.11.016

    Article  CAS  Google Scholar 

  21. Y. Galagan, Flexible solar cells, in Roll-to-Roll Manufacturing: Process Elements and Recent Advances, ed. by Y. Galagan, et al. (Wiley, Hoboken, 2018), pp. 325–362

    Chapter  Google Scholar 

  22. S. Teraji, J. Chantana, T. Watanabe, T. Minemoto, Development of flexible Cd-free Cu(In, Ga)Se2 solar cell on stainless steel substrate through multi-layer precursor method. J. Alloys Compd. 756, 111–116 (2018). https://doi.org/10.1016/j.jallcom.2018.05.024

    Article  CAS  Google Scholar 

  23. K. Sun, F. Liu, J. Huang, C. Yan, N. Song, H. Sun, C. Xue, Y. Zhang, A. Pu, Y. Shen, J.A. Stride, M. Green, X. Hao, Flexible kesterite Cu2 ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Sol. Energy Mater. Sol. Cells. (2018). https://doi.org/10.1016/j.solmat.2018.02.036

    Article  Google Scholar 

  24. S. Zhang, Y. Qin, J. Zhu, J. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. (2018). https://doi.org/10.1002/adma.201800868

    Article  Google Scholar 

  25. Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren, X. Dai, Z. Yao, Y. Zhou, L. Xiang, H. Du, H. He, N. Wang, K. Jiang, H. Lin, H. Zhang, Z. Guo, All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706777

    Article  Google Scholar 

  26. C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, H.J. Bolink, Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–997 (2014). https://doi.org/10.1039/c3ee43619e

    Article  CAS  Google Scholar 

  27. Y. Galagan, D.J.D. Moet, D.C. Hermes, P.W.M. Blom, R. Andriessen, Large area ITO-free organic solar cells on steel substrate. Org. Electron. Physics, Mater. Appl. 13, 3310–3314 (2012). https://doi.org/10.1016/j.orgel.2012.09.039

    Article  CAS  Google Scholar 

  28. S.J. Lee, Y.H. Chen, S.C. Hu, Y.C. Lin, J.W. Chang, T.L. Poon, W.C. Ke, Improved performance of amorphous Si thin-film solar cells on 430 stainless steel substrate by an electrochemical mechanical polishing process. J. Alloys Compd. 558, 95–98 (2013). https://doi.org/10.1016/j.jallcom.2013.01.044

    Article  CAS  Google Scholar 

  29. F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules. Sol. Energy 77, 685–695 (2004). https://doi.org/10.1016/j.solener.2004.04.010

    Article  CAS  Google Scholar 

  30. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, CIGS absorbers and processes. Prog. Photovolt. Res. Appl. 18, 453–466 (2010). https://doi.org/10.1002/pip.969

    Article  CAS  Google Scholar 

  31. W.-S. Liu, H.-C. Huaan, N.-W. Puaa, S.-C. Liang (2014) Using a Ti/TiN composite structure as the diffusion barrier layer for CIGS solar cell application on stainless, in 2014 21st Int. Work. Act. Flatpanel Displays Devices, IEEE, pp. 245–248. https://doi.org/10.1109/AM-FPD.2014.6867182

  32. W.S. Liu, H.C. Hu, N.W. Pu, S.C. Liang, Developing flexible CIGS solar cells on stainless steel substrates by using Ti/TiN composite structures as the diffusion barrier layer. J. Alloys Compd. 631, 146–152 (2015). https://doi.org/10.1016/j.jallcom.2014.12.189

    Article  CAS  Google Scholar 

  33. C.Y. Shi, Y. Sun, Q. He, F.Y. Li, J.C. Zhao, Cu(In, Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers. Sol. Energy Mater. Sol. Cells. 93, 654–656 (2009). https://doi.org/10.1016/j.solmat.2008.12.004

    Article  CAS  Google Scholar 

  34. D. Bae, S. Kwon, J. Oh, J. Lee, W. Kim, Fabrication of high efficiency flexible CIGS solar cell with ZnO diffusion barrier on stainless steel substrate. Mater. Res. Soc. Symp. Proc. 1324, 115–120 (2012). https://doi.org/10.1557/opl.2011.966

    Article  CAS  Google Scholar 

  35. D. Bae, S. Kwon, J. Oh, W.K. Kim, H. Park, Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In, Ga)Se2 solar cells. Renew. Energy 55, 62–68 (2013). https://doi.org/10.1016/j.renene.2012.12.024

    Article  CAS  Google Scholar 

  36. K.-B. Kim, Effect of metal barrier layer for flexible solar cell devices on tainless steel substrates. Appl. Sci. Converg. Technol. 26, 16–19 (2017). https://doi.org/10.5757/asct.2017.26.1.16

    Article  Google Scholar 

  37. P. Blösch, F. Pianezzi, A. Chirilǎ, P. Rossbach, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Diffusion barrier properties of molybdenum back contacts for Cu(In, Ga)Se2 solar cells on stainless steel foils. J. Appl. Phys. 113, 054506 (2013). https://doi.org/10.1063/1.4789616

    Article  CAS  Google Scholar 

  38. C.-W. Kim, H.J. Kim, J.H. Kim, C. Jeong, Characterization of flexible CIGS thin film solar cells on stainless steel with intrinsic ZnO diffusion barriers. J. Nanosci. Nanotechnol. 16, 5124–5127 (2016). https://doi.org/10.1166/jnn.2016.12198

    Article  CAS  Google Scholar 

  39. K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates. Thin Solid Films 431–432, 392–397 (2003). https://doi.org/10.1016/S0040-6090(03)00259-1

    Article  CAS  Google Scholar 

  40. X. Hu, Z. Song, W. Liu, F. Qin, Z. Zhang, H. Wang, Chemical mechanical polishing of stainless steel foil as flexible substrate. Appl. Surf. Sci. 258, 5798–5802 (2012). https://doi.org/10.1016/j.apsusc.2012.02.100

    Article  CAS  Google Scholar 

  41. L. Jiang, Y. He, Y. Yang, J. Luo, Chemical mechanical polishing of stainless steel as solar cell substrate. ECS J. Solid State Sci. Technol. 4, P162–P170 (2015). https://doi.org/10.1149/2.0171505jss

    Article  CAS  Google Scholar 

  42. O. Nwakanma, P. Reyes, S. Velumani, Electrical, structural, and topographical properties of direct current (DC) sputtered bilayer molybdenum thin films. J. Mater. Sci. Mater. Electron. 29, 15671–15681 (2018). https://doi.org/10.1007/s10854-018-9165-2

    Article  CAS  Google Scholar 

  43. K. Sun, F. Liu, J. Huang, C. Yan, N. Song, H. Sun, C. Xue, Y. Zhang, A. Pu, Y. Shen, J.A. Stride, M. Green, X. Hao, Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Sol. Energy Mater. Sol. Cells. 182, 14–20 (2018). https://doi.org/10.1016/j.solmat.2018.02.036

    Article  CAS  Google Scholar 

  44. W.J. Lee, D.H. Cho, J.H. Wi, W.S. Han, J. Kim, Y.D. Chung, Na effect on flexible Cu(In, Ga)Se2 photovoltaic cell depending on diffusion barriers (SiOx, i-ZnO) on stainless steel. Mater. Chem. Phys. 147, 783–787 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.021

    Article  CAS  Google Scholar 

  45. G.L. Agawane, S.W. Shin, S.A. Vanalakar, M.P. Suryawanshi, A.V. Moholkar, J.H. Kim, Investigations on chemo-mechano stabilities of the molybdenum thin films deposited by DC-sputter technique. Zeitschrift Fur Phys. Chemie. (2015). https://doi.org/10.1515/zpch-2014-0624

    Article  Google Scholar 

  46. S.M. Pandharkar, S.R. Rondiya, A.V. Rokade, B.B. Gabhale, H.M. Pathan, S.R. Jadkar, Synthesis and characterization of molybdenum back contact using direct current-magnetron sputtering for thin film solar cells. Front. Mater. (2018). https://doi.org/10.3389/fmats.2018.00013

    Article  Google Scholar 

  47. R.F. Bunshah, Handbook of Deposition Technolgies for Films and Coatings (William Andrew, Amsterdam, 1994)

    Google Scholar 

  48. P.M. Martin, Handbook of Depositions Tecnologies for Film and coating (William Andrew, Amsterdam, 2005)

    Google Scholar 

  49. J.J. Cras, C.A. Rowe-Taitt, D.A. Nivens, F.S. Ligler, Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron. 14, 683–688 (1999). https://doi.org/10.1016/S0956-5663(99)00043-3

    Article  CAS  Google Scholar 

  50. D.M. Mattox, Deposition (PVD) Processing Second edition Dedication To my wife Vivienne (William Andrew, Amsterdam, 2009)https://doi.org/10.1016/B978-0-8155-2037-5.00025-3

    Book  Google Scholar 

  51. A. Maldonado, M. dela Luzolvera, Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application. J. Mater. Sci. Mater. Electron. 29, 15682–15692 (2018). https://doi.org/10.1007/s10854-018-9166-1

    Article  CAS  Google Scholar 

  52. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  53. F. Nemla, D. Cherrad, Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density. Appl. Surf. Sci. 375, 1–8 (2016). https://doi.org/10.1016/j.apsusc.2016.01.012

    Article  CAS  Google Scholar 

  54. S.K. Ghosh, T. Bera, O. Karacasu, A. Swarnakar, J.G. Buijnsters, J.P. Celis, Nanostructured MoSx-based thin films obtained by electrochemical reduction. Electrochim. Acta. (2011). https://doi.org/10.1016/j.electacta.2010.10.065

    Article  Google Scholar 

  55. G.K. Williamson, R.E. Smallman III, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. (1956). https://doi.org/10.1080/14786435608238074

    Article  Google Scholar 

  56. S. Velumani, S.K. Narayandass, D. Mangalaraj, Structural characterization of hot wall deposited cadmium selenide thin films. Semicond. Sci. Technol. (1998). https://doi.org/10.1088/0268-1242/13/9/009

    Article  Google Scholar 

  57. R.J. MacDonald, B.V. King, SIMS—Secondary Ion Mass Spectrometry (Springer, New York, 2003), pp. 127–154. https://doi.org/10.1007/978-3-662-05227-3_5

    Book  Google Scholar 

  58. Z.H. Li, E.S. Cho, S.J. Kwon, Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In, Ga)Se2 solar cells. Appl. Surf. Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.06.101

    Article  Google Scholar 

  59. W. Li, X. Yan, A.G. Aberle, S. Venkataraj, Effect of deposition pressure on the properties of magnetron-sputter-deposited molybdenum back contacts for CIGS solar cells. Jpn. J. Appl. Phys. 54, 08KC14 (2015). https://doi.org/10.7567/JJAP.54.08KC14

    Article  CAS  Google Scholar 

  60. J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 260, 26–31 (1995). https://doi.org/10.1016/0040-6090(94)06462-8

    Article  CAS  Google Scholar 

  61. H. Windischmann, R.W. Collins, J.M. Cavese, Effect of hydrogen on the intrinsic stress in ion beam sputtered amorphous silicon films. J. Non. Cryst. Solids. 85, 261–272 (1986). https://doi.org/10.1016/0022-3093(86)90001-3

    Article  CAS  Google Scholar 

  62. I. Blech, U. Cohen, Effects of humidity on stress in thin silicon dioxide films. J. Appl. Phys. 53, 4202–4207 (1982). https://doi.org/10.1063/1.331244

    Article  CAS  Google Scholar 

  63. T. Yamaguchi, R. Miyagawa, Effects of oxygen on the properties of sputtered molybdenum thin films. Jpn. J. Appl. Phys. 30, 2069–2073 (1991). https://doi.org/10.1143/JJAP.30.2069

    Article  CAS  Google Scholar 

  64. E. Weber, H.G. Riotte, Iron as a thermal defect in silicon. Appl. Phys. Lett. 33, 433–435 (1978). https://doi.org/10.1063/1.90412

    Article  CAS  Google Scholar 

  65. H.J. Rijks, J. Bloem, L.J. Giling, Heat treatment of silicon and the nature of thermally induced donors. J. Appl. Phys. 50, 1370–1374 (1979). https://doi.org/10.1063/1.326117

    Article  CAS  Google Scholar 

  66. S. Sintonen, P. Kivisaari, S. Pimputkar, S. Suihkonen, T. Schulz, J.S. Speck, S. Nakamura, Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN. J. Cryst. Growth. 456, 43–50 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.040

    Article  CAS  Google Scholar 

  67. Y. Kim, M.S. Kim, H.J. Yun, S.Y. Ryu, B.J. Choi, Effect of growth temperature on AlN thin films fabricated by atomic layer deposition. Ceram. Int. 44, 17447–17452 (2018). https://doi.org/10.1016/j.ceramint.2018.06.212

    Article  CAS  Google Scholar 

  68. H. Zhao, J. Xie, A. Mao, A. Wang, Y. Chen, T. Liang, D. Ma, Effects of heating mode and temperature on the microstructures, electrical and optical properties of molybdenum thin films. Materials (Basel). 11, 1634 (2018). https://doi.org/10.3390/ma11091634

    Article  CAS  Google Scholar 

  69. D. Rafaja, H. Köstenbauer, U. Mühle, C. Löffler, G. Schreiber, M. Kathrein, J. Winkler, Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films. Thin Solid Films 528, 42–48 (2013). https://doi.org/10.1016/j.tsf.2012.06.087

    Article  CAS  Google Scholar 

  70. J.-H. Cha, K. Ashok, N.J.S. Kissinger, Y.-H. Ra, J.-K. Sim, J.-S. Kim, C.-R. Lee, Effect of thermal annealing on the structure, morphology, and electrical properties of mo bottom electrodes for solar cell applications. J. Korean Phys. Soc. 59, 2280–2285 (2011). https://doi.org/10.3938/jkps.59.2280

    Article  CAS  Google Scholar 

  71. B. Rajesh Kumar, T. Subba Rao, AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Biostruct. 7, 1881–1889 (2012).

    Google Scholar 

  72. M.M. Aqil, M.A. Azam, M.F. Aziz, R. Latif, Deposition and characterization of molybdenum thin film using direct current magnetron and atomic force microscopy. J. Nanotechnol. 2017, 1–4 (2017). https://doi.org/10.1155/2017/4862087

    Article  CAS  Google Scholar 

  73. B. Bhushan, Surface roughness analysis and measurement techniques. in: B. Bhushan (ed) Modern Tribology Handbook. CRC Press, Boca Raton, 2000.

  74. A. Sedky, T.A. El-Brolossy, S.B. Mohamed, Correlation between sintering temperature and properties of ZnO ceramic varistors. J. Phys. Chem. Solids. (2012). https://doi.org/10.1016/j.jpcs.2011.11.035

    Article  Google Scholar 

  75. D.S. McPhail, Applications of secondary ion mass spectrometry (SIMS) in materials science. J. Mater. Sci. 41, 873–903 (2006). https://doi.org/10.1007/s10853-006-6568-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Consejo Nacional de Ciencia y Tecnología y la Secretaría de Energía (CONACyT-SENER) (Project 263043) and El Centro Mexicano de Innovacíon en Energía Solar (CEMIE-Sol P-55) for the financial support for this project. We also wish to acknowledge Miguel Angel Avendaño (AFM), Francisco Alvarado Cesar (SEM measurements), Norma Iris González García (e-beam evaporation), M. en C. Adolfo Tavira Fuentes (XRD measurements), and Ing. Miguel Ángel Luna Arias (thickness measurements) for their technical support. Also, A.M and O.N thank CONACyT for the scholarship opportunities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velumani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán, A., Nwakanma, O., Velumani, S. et al. Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application. J Mater Sci: Mater Electron 31, 7524–7538 (2020). https://doi.org/10.1007/s10854-020-03058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03058-7

Navigation