Skip to main content
Log in

Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the Pb(Zr0.52Ti0.48)1−xFexO3 (FePZT, x = 0.05) nanopowders were prepared by dry and wet sol–gel methods in the morphotropic phase boundary (MPB) region. The effect of Fe concentration on the structural, morphological, and optical properties of PZT nanopowders was investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR), and Ultraviolet–Visible (UV–Vis) analysis. XRD results showed that the nanopowders have a perovskite structure with the tetragonal phase. The lattice parameters and average crystallite size of samples decreased from 33 to 21 nm with increasing Fe incorporation due to the substitution of Fe atoms instead of Ti and Zr atoms. FESEM images showed that all average diameters of the nanopowders decreased with the Fe concentration. The optical properties of the pure and FePZT nanopowders such as longitudinal optical (LO) and transverse optical (TO) phonon frequencies, refractive index, extinction coefficient, and the real-imaginary parts of dielectric function were examined by the Kramers–Kronig model. As a result, the TO and refractive index of nanopowders are increased by substituting Ti and Zr with Fe atoms due to their different ionic radius. Also, while the crystallite size increases from 20.95 to 33.52 nm, the LO–TO splitting increases too. The optical band-gap values of the pure and FePZT nanopowders were estimated using UV–Vis spectroscopy and Kubelka–Munk model. The band-gap increased from 3.52 to 3.60 eV with a decrease in the crystal size of nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Jaffe, Piezoelectric ceramics (Elsevier, Saint Louis, 2012)

    Google Scholar 

  2. H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure piezoelectricity generation by a flexible nanogenerator based on lead zirconate titanate nanofibers. ACS Omega 4, 2610–2617 (2019)

    CAS  Google Scholar 

  3. X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He, X. Chou, High-Performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 7, 979–985 (2019)

    CAS  Google Scholar 

  4. Q.-L. Zhao, G.-P. He, J.-J. Di, W.-L. Song, Z.-L. Hou, P.-P. Tan, D.-W. Wang, M.-S. Cao, Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single-crystal nanowires. ACS Appl. Mater. Interfaces 9, 24696–24703 (2017)

    CAS  Google Scholar 

  5. W. Jin, Z. Wang, H. Huang, X. Hu, Y. He, M. Li, L. Li, Y. Gao, Y. Hu, H. Gu, High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr, Ti)O3 nanorod arrays. RSC Adv. 8, 7422–7427 (2018)

    CAS  Google Scholar 

  6. E. Pakizeh, M. Moradi, Effect of particle size on the optical properties of lead zirconate titanate nanopowders. J. Am. Ceram. Soc. 101, 5335–5345 (2018)

    CAS  Google Scholar 

  7. L. Jian, A.S. Kumar, C.S.C. Lekha, S. Vivek, I. Salvado, A.L. Kholkin, S.S. Nair, Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Structures & Nano-Objects 18, 100272 (2019)

    CAS  Google Scholar 

  8. W.-S. Jung, Y.-H. Do, M.-G. Kang, C.-Y. Kang, Energy harvester using PZT nanotubes fabricated by template-assisted method. Curr. Appl. Phys. 13, S131–S134 (2013)

    Google Scholar 

  9. S.D. Hyun, H.W. Park, Y.J. Kim, M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kwon, T. Moon, K.D. Kim, Y.B. Lee, B.S. Kim, C.S. Hwang, Dispersion in ferroelectric switching performance of polycrystalline Hf0.5Zr0.5O2 Thin Films. ACS Appl. Mater. Interfaces 10, 35374–35384 (2018)

    CAS  Google Scholar 

  10. X.-D. Jian, B. Lu, D.-D. Li, Y.-B. Yao, T. Tao, B. Liang, X.-W. Lin, J.-H. Guo, Y.-J. Zeng, S.-G. Lu, Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1–xO3 ceramics. ACS Appl. Mater. Interfaces 11, 20167–20173 (2019)

    CAS  Google Scholar 

  11. S.B. Seshadri, M.M. Nolan, G. Tutuncu, J.S. Forrester, E. Sapper, G. Esteves, T. Granzow, P.A. Thomas, J.C. Nino, T. Rojac, J.L. Jones, Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region. Sci. Rep. 8, 4120 (2018)

    Google Scholar 

  12. J. Tang, J. Liu, H. Huang, Dielectric, piezoelectric and ferroelectric properties of flexible 0–3 type PZT/PVDF composites doped with grapheme. J. Electron. Mater. 48, 4033–4039 (2019)

    CAS  Google Scholar 

  13. J. Zhang, Dielectric, ferroelectric and piezoelectric properties of PZT ceramics by ZnO doping. Integr. Ferroelectr. 199, 105–111 (2019)

    CAS  Google Scholar 

  14. J. Caceres, C. Passos, J. Chagas, R. Barbieri, R. Corteletti, Study of structural and electric properties of the PZT 52/48 doped with Er+3. Res. Mater. (2019). https://doi.org/10.1590/1980-5373-mr-2019-0123

    Article  Google Scholar 

  15. S.W. Ko, W. Zhu, C. Fragkiadakis, T. Borman, K. Wang, P. Mardilovich, S. Trolier-McKinstry, Improvement of reliability and dielectric breakdown strength of Nb-doped lead zirconate titanate films via microstructure control of seed. J. Am. Ceram. Soc. 102, 1211–1217 (2019)

    CAS  Google Scholar 

  16. S. Matteppanavar, B. Angadi, S. Rayaprol, Neutron diffraction studies on chemical and magnetic structure of multiferroic PbFe 0.67 W 0.33 O 3, in AIP conference proceedings, American Institute of Physics, 2014, pp. 1669–1671.

  17. S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, B. Sahoo, Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb (Fe0.634W0.266Nb0.1)O3 Ceramic. J. Supercond. Novel Magn. 30, 1317–1325 (2017)

    CAS  Google Scholar 

  18. S. Madolappa, A. Anupama, P. Jaschin, K. Varma, B. Sahoo, Magnetic and ferroelectric characteristics of Gd 3+ and Ti 4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39, 593–601 (2016)

    CAS  Google Scholar 

  19. V. Khopkar, B. Sahoo, Low temperature dielectric properties and NTCR behavior of BaFe0.5Nb0.5O3 double perovskite ceramic. Phys. Chem. Chem. Phys. 22, 2986–2998 (2020)

    CAS  Google Scholar 

  20. H.S. Mohanty, T. Dam, H. Borkar, A. Kumar, K. Mishra, S. Sen, B. Behera, B. Sahoo, D.K. Pradhan, Studies of ferroelectric properties and leakage current behaviour of microwave sintered ferroelectric Na0.5Bi0.5TiO3 ceramic. Ferroelectrics 517, 25–33 (2017)

    CAS  Google Scholar 

  21. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, Impedance spectroscopic study on microwave sintered (1–x) Na0.5Bi0.5TiO3–x BaTiO3 ceramics. J. Mater. Sci.: Mater Electron. 29, 6966–6977 (2018)

    CAS  Google Scholar 

  22. S. Matteppanavar, S. Rayaprol, B. Angadi, B. Sahoo, Composition dependent room temperature structure, electric and magnetic properties in magnetoelectric Pb (Fe1/2Nb1/2) O3Pb (Fe2/3W1/3) O3 solid-solutions. J. Alloys Compd. 677, 27–37 (2016)

    CAS  Google Scholar 

  23. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, B. Sahoo, Investigation on structural, Mössbauer and ferroelectric properties of (1–x) PbFe0.5Nb0.5O3–(x) BiFeO3 solid solution. J. Magn. Magn. Mater. 418, 122–127 (2016)

    CAS  Google Scholar 

  24. A.S. Priya, I.S. Banu, M. Chavali, Influence of (La, Cu) doping on the room temperature multiferroic properties of BiFeO3 Ceramics. Arab. J. Sci. Eng. 40, 2079–2084 (2015)

    CAS  Google Scholar 

  25. M. Prabu, I. Banu, S.T. Sundari, R. Krishnan, K.N. Prakash, Y. Chen, M. Chavali, Optical studies of pulsed laser deposited nanostructured Pb (Zr0.52Ti0.48)O3 thin film by spectroscopic ellipsometry. J. Nanosci. Nanotechnol. 14, 5335–5341 (2014)

    CAS  Google Scholar 

  26. M. Prabu, I.S. Banu, S. Gobalakrishnan, M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J. Alloys Compd. 551, 200–207 (2013)

    CAS  Google Scholar 

  27. M. Prabu, I. Banu, S. Gobalakrishnan, M. Chavali, S. Umapathy, Synthesis and optical characterization of lead zirconate titanate (52/48) powders by sol–gel method. Adv. Sci. Eng. Med. 5, 496–499 (2013)

    Google Scholar 

  28. E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C 4, 1066–1079 (2016)

    CAS  Google Scholar 

  29. S. Puthucheri, P.K. Pandey, N.S. Gajbhiye, A. Gupta, A. Singh, R. Chatterjee, S.K. Date, Microstructural, electrical, and magnetic properties of acceptor-doped nanostructured lead zirconate titanate. J. Am. Ceram. Soc. 94, 3941–3947 (2011)

    CAS  Google Scholar 

  30. E. Perez-Delfin, J.E. García, D.A. Ochoa, R. Pérez, F. Guerrero, J.A. Eiras, Effect of Mn-acceptor dopant on dielectric and piezoelectric responses of lead lanthanum zirconate titanate piezoceramics. J. Appl. Phys. 110, 034106 (2011)

    Google Scholar 

  31. S.R. Sangawar, B. Praveenkumar, P. Divya, H.H. Kumar, Fe doped hard PZT ceramics for high power SONAR transducers. Mater. Today 2, 2789–2794 (2015)

    Google Scholar 

  32. T.-G. Lee, H.-J. Lee, S.-W. Kim, D.-H. Kim, S.H. Han, H.-W. Kang, C.-Y. Kang, S. Nahm, Piezoelectric properties of Pb(Zr, Ti)O3-Pb(Ni, Nb)O3 ceramics and their application in energy harvesters. J. Eur. Ceram. Soc. 37, 3935–3942 (2017)

    CAS  Google Scholar 

  33. A. Kumar, A. Goswami, K. Singh, R. McGee, T. Thundat, D. Kaur, Magnetoelectric coupling in Ni-Mn-In/PLZT artificial multiferroic heterostructure and its application in mid IR photothermal modulation by external magnetic field. ACS Appl. Electron. Mater. 1, 11 (2019)

    Google Scholar 

  34. Y. Lu, J. Chen, Z. Cheng, S. Zhang, The PZT/Ni unimorph magnetoelectric energy harvester for wireless sensing applications. Energy Convers. Manag. 200, 112084 (2019)

    CAS  Google Scholar 

  35. L.D. Geng, Y. Yan, S. Priya, Y.U. Wang, Computational study of cobalt-modified nickel-ferrite/PZT magnetoelectric composites for voltage tunable inductor applications. Acta Mater. 166, 493–502 (2019)

    CAS  Google Scholar 

  36. Y. Yu, J. Wu, T. Zhao, S. Dong, H. Gu, Y. Hu, MnO2 doped PSN–PZN–PZT piezoelectric ceramics for resonant actuator application. J. Alloys Compd. 615, 676–682 (2014)

    CAS  Google Scholar 

  37. H.-S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, K.K. Shung, PMN-PT–PZT composite films for high frequency ultrasonic transducer applications. Sens. Actuators A 179, 121–124 (2012)

    CAS  Google Scholar 

  38. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Sanger, A. Singh, P.M. Vilarinho, V. Gupta, K. Sreenivas, R.S. Katiyar, J.F. Scott, Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 45, 12716–12726 (2019)

    CAS  Google Scholar 

  39. S. Adel, B. Cherifa, D.D. Elhak, B. Mounira, Effect of Cr2O3 and Fe2O3 doping on the thermal activation of un-polarized PZT charge carriers. Boletín de la Sociedad Española de Cerámica y Vidrio 57, 124–131 (2018)

    Google Scholar 

  40. S. Samanta, V. Sankaranarayanan, K. Sethupathi, Effect of successive multiple doping of La, Nb and Fe on structure and lattice vibration of MPB PZT. Mater. Today 5, 27919–27927 (2018)

    CAS  Google Scholar 

  41. B. Praveen Kumar, S.R. Sangawar, H.H. Kumar, Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics. Ceram. Int. 40, 3809–3812 (2014)

    CAS  Google Scholar 

  42. M. Zhu, Z. Du, H. Li, B. Chen, L. Jing, R.Y.J. Tay, J. Lin, S.H. Tsang, E.H.T. Teo, Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator. Appl. Surf. Sci. 425, 1059–1065 (2017)

    CAS  Google Scholar 

  43. M. Zhu, H. Zhang, Z. Du, C. Liu, Structural insight into the optical and electro-optic properties of lead zirconate titanate for high-performance photonic devices. Ceram. Int. 45, 22324–22330 (2019)

    CAS  Google Scholar 

  44. H. Zhao, W. Ren, X. Liu, Design and fabrication of micromachined pyroelectric infrared detector array using lead titanate zirconate (PZT) thin film. Ceram. Int. 43, S464–S469 (2017)

    CAS  Google Scholar 

  45. M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón, Photoluminescence of sol–gel synthesized PZT powders. J. Lumin. 179, 280–286 (2016)

    Google Scholar 

  46. E. Longo, A.T. de Figueiredo, M.S. Silva, V.M. Longo, V.R. Mastelaro, N.D. Vieira, M. Cilense, R.W.A. Franco, J.A. Varela, Influence of structural disorder on the photoluminescence emission of PZT powders. J. Phys. Chem. A 112, 8953–8957 (2008)

    CAS  Google Scholar 

  47. J. Cardin, D. Leduc, T. Schneider, C. Lupi, D. Averty, H.W. Gundel, Optical characterization of PZT thin films for waveguide applications. J. Eur. Ceram. Soc. 25, 2913–2916 (2005)

    CAS  Google Scholar 

  48. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    CAS  Google Scholar 

  49. D.-M. Smilgies, Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009)

    CAS  Google Scholar 

  50. F. Wooten, Maxwell's equations and the dielectric function, in Optical properties of solids, ed. by F. Wooten (Academic Press, New York, 1972), pp. 15–41

    Google Scholar 

  51. V. Lucarini, K.-E. Peiponen, J.J. Saarinen, E.M. Vartiainen, Kramers-Kronig relations and sum rules in linear optics, in Kramers-Kronig relations in optical materials research, ed. by V. Lucarini, K.-E. Peiponen, J.J. Saarinen, E.M. Vartiainen (Springer, Berlin, 2005), pp. 27–48

    Google Scholar 

  52. E. Pakizeh, S. Hosseini, A. Kompany, M. Ghasemifard, Synthesis and optical characterization of pyroelectric nanopowders based on PZT (95/5). Int. J. Nanosci. 9, 193–199 (2010)

    CAS  Google Scholar 

  53. E. Pakizeh, M. Moradi, Kramers-Kronig method for determination of optical properties of PZT nanotubes fabricated by sol–gel method and porous anodic alumina with high aspect ratio. Int. J. Modern Phys. B 32, 1850096 (2018)

    CAS  Google Scholar 

  54. M.A. Assiri, M. Aslam Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, A.V. Soldatov, Kramers-Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): new trend in laser power attenuation using dyes. Phys. B 552, 62–70 (2019)

    CAS  Google Scholar 

  55. M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, A.V. Soldatov, Optical analysis of nanostructured rose bengal thin films using Kramers-Kronig approach: New trend in laser power attenuation. Opt. Laser Technol. 112, 207–214 (2019)

    CAS  Google Scholar 

  56. A.A.A. Darwish, A.M. Aboraia, A.V. Soldatov, I.S. Yahia, Deposition of Rhodamine B dye on flexible substrates for flexible organic electronic and optoelectronic: optical spectroscopy by Kramers-Kronig analysis. Opt. Mater. 95, 109219 (2019)

    Google Scholar 

  57. D. Roessler, Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119 (1965)

    CAS  Google Scholar 

  58. F. Behzadi, E. Saievar-Iranizad, E. Pakizeh, Optical study on single-layer photoluminescent graphene oxide nanosheets through a simple and green hydrothermal method. J. Photochem. Photobiol. A 364, 595–601 (2018)

    CAS  Google Scholar 

  59. C. Kittel, Introduction to solid state physics (Wiley, New York, 1976)

    Google Scholar 

  60. S.S. Abdullahi, S. Güner, Y.K.I.M. Musa, B.I. Adamu, M.I. Abdulhamid, Sımple method for the determination of band gap of a nanopowdered sample using kubelka munk theory. J. Niger. Assoc. Math. Phys. 35, 241–246 (2016)

    Google Scholar 

  61. F.P. Miller, A.F. Vandome, J. McBrewster, Beer-Lambert Law (VDM Publishing, Saarbrücken, 2009)

    Google Scholar 

  62. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Sanger, A. Singh, P.M. Vilarinho, V. Gupta, K. Sreenivas, R.S. Katiyar, Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 45, 12716–12726 (2019)

    CAS  Google Scholar 

  63. R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)

    Google Scholar 

  64. G.H. Khorrami, A.K. Zak, A. Kompany, Optical and structural properties of X-doped (X= Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods. Ceram. Int. 38, 5683–5690 (2012)

    CAS  Google Scholar 

  65. E. Pakizeh, M. Moradi, A. Ahmadi, Effect of sol–gel pH on XRD peak broadening, lattice strain, ferroelectric domain orientation, and optical bandgap of nanocrystalline Pb1. 1 (Zr0. 52Ti0. 48) O3. J. Phys. Chem. Solids 75, 174–181 (2014)

    CAS  Google Scholar 

  66. A.K. Zak, W.A. Majid, Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region. Ceram. Int. 37, 753–758 (2011)

    CAS  Google Scholar 

  67. S. Samanta, V. Sankaranarayanan, K. Sethupathi, Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum 156, 456–462 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Pakizeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakizeh, E. Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders. J Mater Sci: Mater Electron 31, 4872–4881 (2020). https://doi.org/10.1007/s10854-020-03050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03050-1

Navigation