Skip to main content
Log in

Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Si/Bi0.4Sb1.6Te3 bulk composites have been prepared by combining mechanical alloying with spark plasma sintering, and their thermoelectric properties have been investigated in the temperature ranges from 298 K to 498 K. The results indicate that with silicon content increasing, the thermopower (S) of the composite system increases substantially. Simultaneously, silicon nano-inclusions cause significant reduction in thermal conductivity (κ) owing to the decreased electrical conductivity and the enhanced phonon scattering of nanoparticles as well as phase boundaries. For the 0.5 vol% Si/Bi0.4Sb1.6Te3 sample, S increases to 224.6 µV K−1 from 210.6 μV K−1 for the sample without silicon and κ decreases to 0.96 Wm−1 K−1 at 423 K from 1.07 Wm−1 K−1 for the sample without silicon, respectively. As a result, the highest ZT of 1.36 is obtained at 423 K of the 0.5 vol% Si/Bi0.4Sb1.6Te3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science 357, p. 6358, (2017).

    Google Scholar 

  2. L.-D. Gangjian Tan, Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, pp. 12123–12149, (2016).

    Article  Google Scholar 

  3. T. Fang, X. Li, C. Hu, et al: Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Adv. Funct. Mater. 29, p. 1900677, (2019).

    Article  Google Scholar 

  4. C.-C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.-S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloys Compd. 671, 538–544 (2016)

    Article  CAS  Google Scholar 

  5. Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions. J. Mater. Chem. C 3, 7045–7052 (2015)

    Article  CAS  Google Scholar 

  6. T. Zhang, J. Jiang, Y. Xiao, Y. Zhai, S. Yang, G. Xu, Z. Ren, Effect of dehydrated-attapulgite nanoinclusions on the thermoelectric properties of BiSbTe alloys. RSC Adv. 3, 4951–4953 (2013)

    Article  CAS  Google Scholar 

  7. C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3) 0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)

    Article  CAS  Google Scholar 

  8. K. Ahmad, C. Wan, P. Zong, Thermoelectric properties of BiSbTe/graphene nanocomposites. J. Mater. Sci. 30, pp. 11923–11930, (2019).

    CAS  Google Scholar 

  9. J. Li, Q. Tan, J. Li, D. Liu, F. Li, Z. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013)

    Article  CAS  Google Scholar 

  10. Y.H. Yeo, T.S. Oh, Thermoelectric properties of p-type (Bi, Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes. Mater. Res. Bull. 58, 54–58 (2014)

    Article  CAS  Google Scholar 

  11. Y. Dou, X. Qin, D. Li, L. Li, T. Zou, Q. Wang, Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2 (Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles. J. Appl. Phys. 114, 044906 (2013)

    Article  Google Scholar 

  12. Y. Dou, X. Qin, D. Li, Y. Li, H. Xin, J. Zhang, Y. Liu, C. Song, L. Wang, Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si3N4 nanoparticles. RSC Adv. 5, 34251–34256 (2015)

    Article  CAS  Google Scholar 

  13. V.D. Blank, S.G. Buga, V.A. Kulbachinskii, V.G. Kytin, V.V. Medvedev, M.Yu. Popov, P.B. Stepanov, V.F. Skok, Thermoelectric properties of Bi0.5Sb1.5Te3/C 60 nanocomposites. Phys. Rev. B 86, 075426 (2012)

    Article  Google Scholar 

  14. R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy Environ. Sci. 11, 1520–1535 (2018)

    Article  CAS  Google Scholar 

  15. A. Pakdel, Q. Guo, V. Nicolosi, T. Mori, Enhanced thermoelectric performance of Bi–Sb–Te/Sb2O3 nanocomposites by energy filtering effect. J. Mater. Chem. A 6, pp. 21341–21349, (2018).

    Article  CAS  Google Scholar 

  16. S.M. Yoon, P. Dharmaiah, H.-S. Kim, C.H. Lee, S.-J. Hong, J.M. Koo, Investigation of thermoelectric properties with dispersion of Fe2O3 and Fe-85Ni nanospheres in Bi0.5Sb1.5Te3 matrix. J. Electron. Mater. 46, pp. 2770–2777, (2017).

    Article  CAS  Google Scholar 

  17. J. Weber, M.I. Alonso, Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 40, 5683 (1989)

    Article  CAS  Google Scholar 

  18. X. Yang, X. Qin, J. Zhang, D. Li, H. Xin, M. Liu, Enhanced thermopower and energy filtering effect from synergetic scattering at heterojunction potentials in the thermoelectric composites with semiconducting nanoinclusions. J. Alloys Compd. 558, 203–211 (2013)

    Article  CAS  Google Scholar 

  19. D.H. Kim, C. Kim, S.H. Heo, H. Kim, Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Mater. 59, 405–411 (2011)

    Article  CAS  Google Scholar 

  20. D.L. Young, T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, W.P. Mulligan, Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. J. Vac. Sci. Technol. A 18, 2978 (2000)

    Article  CAS  Google Scholar 

  21. J.H. Bahk, Z. Bian, A. Shakouri, Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, p. 075204, (2013).

    Article  Google Scholar 

  22. L. Zhao, H. Wu, S. Hao, C. Wu, X. Zhou, K. Biswas, J. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial supports from the Natural Science Foundation of China under Grant no. 51672278 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunchen Dou or Di Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Yan, X., Du, Y. et al. Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions. J Mater Sci: Mater Electron 31, 4808–4814 (2020). https://doi.org/10.1007/s10854-020-03042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03042-1

Navigation