Skip to main content
Log in

Crystal structure and improved microwave dielectric properties of ZnZr(1−x)TixNb2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, ZnZr(1−x)TixNb2O8 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ceramics were synthesized using solid-state reaction method. Rietveld refinement and Raman analysis were employed to investigate the correlation between crystal structure and microwave dielectric properties. Substitution of Ti4+ for Zr4+ promoted grain growth and ceramic sintering, which is confirmed by SEM results and relative density. Second phase (ZnTiNb2O8), which had poorer microwave dielectric properties than that of ZnTiNb2O8 ceramics, occurred when x ≥ 0.4 because of exceeded solution limit. However, Ti4+ ions enter Zr sites when x ≤ 0.3, and this then affects A/B-site bond lengths and structural characteristics of NbO6 octahedron. This improved microwave dielectric properties and mainly, promoted quality factor \((Q\times f)\). Moreover, excellent microwave dielectric properties of \({\varepsilon }_{\text{r}}\) = 29.75, \(Q\times f\) = 107,303 GHz, and \({\tau }_{\text{f}} \)= \(- 24.41 {\text{ppm}}/{^\circ{\rm C} }\) were obtained for ZnZr0.8Ti0.2Nb2O8 (x = 0.2) ceramics sintered at 1150 °C. Thus, the material has a good application prospect in microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Liao, L. Li, X. Ren, X. Yu, D. Guo, M. Wang, N. Alford, A low sintering temperature low loss microwave dielectric material ZnZrNb2O8. J. Am. Ceram. Soc. 95, 3363–3365 (2012)

    CAS  Google Scholar 

  2. S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater. 69, 274–277 (2013)

    CAS  Google Scholar 

  3. H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A = Zn Co, Mg, Mn) ceramics. J. Alloy Compd. 648, 368–373 (2015)

    CAS  Google Scholar 

  4. J. Bi, C. Yang, H. Wu, Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1−xMnxZrNb2O8 (0.02 ≤ x ≤ 0.1) ceramics. Ceram. Int. 43, 92–98 (2017)

    CAS  Google Scholar 

  5. P. Zhang, Y. Zhao, W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1−xAx)2O8 (A = Ta, Sb) ceramics. Dalton Trans. 44, 16684–16693 (2015)

    CAS  Google Scholar 

  6. L. Li, H. Sun, H. Cai, X. Lv, Microstructure and microwave dielectric characteristics of ZnZrNb2O8 and (Zn0.95M0.05)ZrNb2O8 (M = Ni, Mg, Co and Mn) ceramics. J. Alloy Compd. 639, 516–519 (2015)

    CAS  Google Scholar 

  7. L. Li, S. Zhang, J. Ye, X. Lv, H. Sun, S. Li, Crystal structure and microwave dielectric properties of the low dielectric loss ZnZr1−xSnxNb2O8 ceramics. Ceram. Int. 42, 9157–9161 (2016)

    CAS  Google Scholar 

  8. W. Luo, L. Li, X. Lv, S. Zhang, Z. Sun, J. Li, Structure analysis and microwave dielectric properties of germanium ion-doped ZnZrNb2O8 ceramics. J. Mater. Sci.: Mater. Electron. 28, 9755–9762 (2017)

    CAS  Google Scholar 

  9. Y. Huang, Y. Li, Z. Wang, Z. Xie, Z. Shen, Y. Hong, Effects of Zr substitution on microstructure and microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics. Appl. Phys. A 125, 29 (2019)

    CAS  Google Scholar 

  10. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cyrstallogr. Sect. A 32, 751–767 (1976)

    Google Scholar 

  11. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2−xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38, 1508–1516 (2018)

    CAS  Google Scholar 

  12. P.H.C. Camargo, The chemical bond in inorganic chemistry: the bond valence model 2nd edition, J. Mater. Sci. 52, 9959–9962 (2017)

  13. E.S. Kim, J.J. Chang, Crystal structure and microwave dielectric properties of ATiO3, ATa2O6, AWO4(A = Ni, Mg, Co) ceramics, 2009 18th IEEE International Symposium on the Applications of Ferroelectrics, pp. 1–6 (2009)

  14. B. Tang, Q. Xiang, Z. Fang, X. Zhang, Z. Xiong, H. Li, C. Yuan, S. Zhang, Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics. Ceram. Int. 45, 11484–11490 (2019)

    CAS  Google Scholar 

  15. H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram. Int. 40, 14655–14659 (2014)

    CAS  Google Scholar 

  16. T.R. Tsai, M.H. Liang, C.T. Hu, C.C. Chi, I.N. Lin, Terahertz spectroscopic technique for characterizing the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 materials. J. Eur. Ceram. Soc. 21, 2787–2790 (2001)

    CAS  Google Scholar 

  17. S.J. Webb, J. Breeze, R.I. Scott, D.S. Cannell, D.M. Iddles, N.M. Alford, Raman spectroscopic study of gallium-doped Ba(Zn1/3Ta2/3)O3. J. Am. Ceram. Soc. 85, 1753–1756 (2002)

    CAS  Google Scholar 

  18. H.F. Cheng, C.T. Chia, H.L. Liu, M.Y. Chen, Y.T. Tzeng, I.N. Lin, Spectroscopic characterization of Ba(Mg1/3Ta2/3)O3 dielectrics for the application to microwave communication. J. Electromagn. Waves Appl. 21, 629–636 (2007)

    Google Scholar 

  19. E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Transit. 76, 155–170 (2003)

    CAS  Google Scholar 

  20. J.X. Bi, C.F. Xing, Y.H. Zhang, C.H. Yang, H.T. Wu, Correlation of crystal structure and microwave dielectric properties of Zn1−xNixZrNb2O8 (0 ≤ x ≤ 0.1) ceramics, J. Alloys Compd. 2, 123–134 (2017)

  21. G. Murtaza, S.S. Hussain, N.U. Rehman, S. Naseer, M. Shafiq, M. Zakaullah, Carburizing of zirconium using a low energy Mather type plasma focus. Surf. Coat. Technol. 205, 3012–3019 (2011)

    CAS  Google Scholar 

  22. M. Wu, Y. Zhang, M. Xiang, Structural, Raman spectroscopic and microwave dielectric studies on (1–x)NiZrNb2O8xZnTa2O6. J. Mater. Sci.: Mater. Electron. 29, 14471–14478 (2018)

    CAS  Google Scholar 

  23. Y. Zhang, Y. Zhang, M. Xiang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Eur. Ceram. Soc. 36, 1945–1951 (2016)

    CAS  Google Scholar 

  24. J. Zhang, R. Zuo, Y. Cheng, Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8–TiO2 ceramics. Ceram. Int. 42, 7681–7689 (2016)

    CAS  Google Scholar 

  25. Y. Lai, H. Su, G. Wang, X. Tang, X. Huang, X. Liang, H. Zhang, Y. Li, K. Huang, X.R. Wang, Low-temperature sintering of microwave ceramics with high Qf values through LiF addition. J. Am. Ceram. Soc. 102, 1893–1903 (2019)

    CAS  Google Scholar 

  26. H.L. Pan, Q.Q. Liu, Y.H. Zhang, H.T. Wu, Crystal structure and microwave dielectric characteristics of Co-substituted Zn1−xCoxZrNb2O8 (0 ≤ x ≤ 0.1) ceramics, RSC Adv. 6, 86889–86903 (2016)

  27. D. Stroud, The effective medium approximations: some recent developments. Superlattices Microstruct. 23, 567–573 (1998)

    Google Scholar 

  28. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    CAS  Google Scholar 

  29. P. Zhang, Y. Zhao, X. Wang, The correlations between electronic polarizability, packing fraction, bond energy and microwave dielectric properties of Nd(Nb1−xSbx)O4 ceramics. J. Alloy Compd. 644, 621–625 (2015)

    CAS  Google Scholar 

  30. X.Q. Song, K. Du, J. Li, X.K. Lan, W.Z. Lu, X.H. Wang, W. Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45, 279–286 (2019)

    CAS  Google Scholar 

  31. J.X. Bi, C.F. Xing, C.H. Yang, H.T. Wu, Phase composition, microstructure and microwave dielectric properties of rock salt structured Li2ZrO3–MgO ceramics. J. Eur. Ceram. Soc. 38, 3840–3846 (2018)

    CAS  Google Scholar 

  32. S. Roberts, Dielectric constants and polarizabilities of ions in simple crystals and barium titanate. Phys. Rev. 76, 1215–1220 (1949)

    CAS  Google Scholar 

  33. R.D. Shannon, M.A. Subramanian, Dielectric constants of chrysoberyl, spinel, phenacite, and forsterite and the oxide additivity rule. Phys. Chem. Miner. 16, 747–751 (1989)

    CAS  Google Scholar 

  34. K. Du, X.Q. Song, J. Li, J.M. Wu, W.Z. Lu, X.C. Wang, W. Lei, Optimised phase compositions and improved microwave dielectric properties based on calcium tin silicates. J. Eur. Ceram. Soc. 39, 340–345 (2019)

    CAS  Google Scholar 

  35. Q. Liao, L. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Trans. 41, 6963 (2012)

    CAS  Google Scholar 

  36. J. Zhang, J. Zhai, X. Chou, J. Shao, X. Lu, X. Yao, Microwave and infrared dielectric response of tunable Ba1−xSrxTiO3 ceramics. Acta Mater. 57, 4491–4499 (2009)

    CAS  Google Scholar 

  37. W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. J. Alloy Compd. 656, 470–475 (2016)

    CAS  Google Scholar 

  38. C.T. Lee, C.C. Ou, Y.C. Lin, C.Y. Huang, C.Y. Su, Structure and microwave dielectric property relations in (Ba1−xSrx)5Nb4O15 system. J. Eur. Ceram. Soc. 27, 2273–2280 (2007)

    CAS  Google Scholar 

  39. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593–1600 (1963)

    CAS  Google Scholar 

  40. X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, W. Lei, Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics. J. Eur. Ceram. Soc. 38, 1529–1534 (2018)

    CAS  Google Scholar 

  41. I.M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)

    CAS  Google Scholar 

  42. I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B 41, 244–247 (1985)

    Google Scholar 

  43. R.T. Sanderson, Electronegativity and bond energy. J. Am. Chem. Soc. 105, 2259–2261 (1983)

    CAS  Google Scholar 

  44. Y.R. Luo, Comprehensive handbook of chemical bond energies (CRC Press, Boca Raton, 2007)

    Google Scholar 

  45. Q. Liao, L. Li, P. Zhang, L. Cao, Y. Han, Correlation of crystal structure and microwave dielectric properties for Zn(Ti1−xSnx)Nb2O8 ceramics. Mater. Sci. Eng. B 176, 41–44 (2011)

    CAS  Google Scholar 

  46. E.S. Kim, B.S. Chun, K.H. Yoon, Dielectric properties of [Ca1−x(Li1/2Nd1/2)x]1−yZnyTiO3 ceramics at microwave frequencies. Mater. Sci. Eng. B 99, 93–97 (2003)

    Google Scholar 

  47. E. Li, H. Yang, H. Yang, S. Zhang, Effects of Li2O–B2O3–SiO2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics. Ceram. Int. 44, 8072–8080 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61771104 and U1809215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, R., Su, H., Zhang, Q. et al. Crystal structure and improved microwave dielectric properties of ZnZr(1−x)TixNb2O8 ceramics. J Mater Sci: Mater Electron 31, 4769–4779 (2020). https://doi.org/10.1007/s10854-020-03034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03034-1

Navigation