Skip to main content
Log in

The critical role of Tween 80 as a ‘green’ template on the physical properties and photocatalytic performance of TiO2 nanoparticles for Rhodamine B photodegradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A popular non-toxic surfactant, Tween 80 (T80), is widely used in foods, cosmetics, and pharmaceuticals. This eco-friendly surfactant should be promising to be utilized as a non-ionic template in the preparation of TiO2 nanoparticles. Moreover, few studies deal with Tween 80 as a template in the synthesis of various nanoparticles. Different concentrations of T80/isopropanol solutions (0–50%) were used in a modified template-assisted sol–gel route, where the synthesized xerogels were denoted by x%T80-TiO2. Different techniques such as DRS, XRD, SEM, HR-TEM, and N2 adsorption–desorption isotherms were utilized to characterize the as-prepared x%T80-TiO2 catalysts. The obtained results showed that the whole physical properties, such as crystalline parameters, optical properties, micromorphology, nanomorphology, and surface parameters, were affected by the concentration of T80 (T80%). In addition, T80% significantly changed the photoactivity of the synthesized samples toward the photodegradation of Rhodamine B (RB) as a pollutant model. 5%T80-TiO2 nanoparticles were the most reactive catalyst referring to its unique rod structure and existence of a small content of Rutile phase. Finally, tetra (4-carboxyphenyl) porphyrin (TCPP) was anchored on TiO2 nanorods to be used as a visible antenna to enhance its photocatalytic activity toward the visible light irradiation. Briefly, TCPP-sensitized T80-TiO2 nanoparticles showed an enhanced performance toward the degradation of RB under various light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)

    CAS  Google Scholar 

  2. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Chem. Eng. J. 112, 191 (2005)

    CAS  Google Scholar 

  3. M.Y. Rezk, M. Zeitoun, A.N. El-Shazly, M.M. Omar, N.K. Allam, J. Hazard. Mater. 378, 120679 (2019)

    CAS  Google Scholar 

  4. M.A. Hamza, A.N. El-Shazly, S.A. Tolba, N.K. Allam, Chem. Eng. J. 384, 123351 (2020)

    Google Scholar 

  5. D. Xu, S. Cao, J. Zhang, B. Cheng, J. Yu, Beilstein J. Nanotechnol. 5, 658 (2014)

    CAS  Google Scholar 

  6. M.A. Ahmed, Z.M. Abou-Gamra, A.M. Salem, J. Environ. Chem. Eng. 5, 4251 (2017)

    CAS  Google Scholar 

  7. A. Beitollahi, A. Hossein, H. Daie, L. Samie, M. Mehdi, J. Alloys Compds. 490, 311 (2010)

    CAS  Google Scholar 

  8. H. Choi, E. Stathatos, D.D. Dionysiou, Appl. Catal. B 63, 60 (2006)

    CAS  Google Scholar 

  9. W. Li, M. Zhang, J. Zhang, Y. Han, Front. Chem. China 1, 438 (2006)

    Google Scholar 

  10. V. Bhatia, A. Dhir, J. Environ. Chem. Eng. 4, 1267 (2016)

    CAS  Google Scholar 

  11. N. Chaukura, S.S. Mukonza, T.I. Nkambule, B.B. Mamba, Int. J. Environ. Sci. Technol. 16, 1603–1612 (2018)

    Google Scholar 

  12. M.A. Hamza, A.N. El-Shazly, N.K. Allam, Mater. Lett. 262, 127188 (2020)

    Google Scholar 

  13. M. Nasirian, Y.P. Lin, C.F. Bustillo-Lecompte, M. Mehrvar, Int. J. Environ. Sci. Technol. 15, 2009 (2018)

    CAS  Google Scholar 

  14. A. Jraba, Z. Anna, E. Elaloui, Sci. Mater. Electron. 22, 648–658 (2019)

    CAS  Google Scholar 

  15. V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Chem. Eng. J. 261, 3 (2015)

    CAS  Google Scholar 

  16. S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail, K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, J. Hazard. Mater. 280, 723 (2014)

    CAS  Google Scholar 

  17. W. Yu, X. Liu, L. Pan, J. Li, J. Liu, J. Zhang, P. Li, C. Chen, Z. Sun, Appl. Surf. Sci. 319, 107 (2014)

    CAS  Google Scholar 

  18. J. Geng, D. Yang, J. Zhu, D. Chen, Z. Jiang, Mater. Res. Bull. 44, 146 (2009)

    CAS  Google Scholar 

  19. A. Siddiqa, D. Masih, D. Anjum, M. Siddiq, J. Environ. Sci. 37, 100 (2015)

    CAS  Google Scholar 

  20. X. Chen, X. Zhang, Y. Su, L. Lei, Appl. Surf. Sci. 254, 6693 (2008)

    CAS  Google Scholar 

  21. D.R. Zhang, H.L. Liu, S.Y. Han, W.X. Piao, J. Ind. Eng. Chem. 19, 1838 (2013)

    CAS  Google Scholar 

  22. M. Wei, N. Song, F. Li, Z.N. Qi, M.M. Yao, J. Mater. Sci. Mater. Electron. 28, 6320 (2017)

    CAS  Google Scholar 

  23. Z. Guo, B. Chen, J. Mu, M. Zhang, P. Zhang, Z. Zhang, J. Wang, X. Zhang, Y. Sun, C. Shao, Y. Liu, J. Hazard. Mater. 219–220, 156 (2012)

    Google Scholar 

  24. Z.M. Abou-Gamra, M.A. Ahmed, J. Photochem. Photobiol. B 160, 134 (2016)

    CAS  Google Scholar 

  25. H. Wang, D. Zhou, Z. Wu, J. Wan, X. Zheng, L. Yu, D.L. Phillips, Mater. Res. Bull. 57, 311 (2014)

    CAS  Google Scholar 

  26. C. Wang, J. Li, G. Mele, M.Y. Duan, X.F. Lü, L. Palmisano, G. Vasapollo, F.X. Zhang, Dye. Pigment. 84, 183 (2010)

    CAS  Google Scholar 

  27. J. Niu, B. Yao, Y. Chen, C. Peng, X. Yu, J. Zhang, G. Bai, Appl. Surf. Sci. 271, 39 (2013)

    CAS  Google Scholar 

  28. S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Appl. Catal. B 119–120, 156 (2012)

    Google Scholar 

  29. A. Kathiravan, V. Anbazhagan, M. Asha Jhonsi, R. Renganathan, Spectrochim. Acta Part A 70, 615 (2008)

    CAS  Google Scholar 

  30. A. Kathiravan, R. Renganathan, J. Colloid Interface Sci. 331, 401 (2009)

    CAS  Google Scholar 

  31. G. Granados-Oliveros, E.A. Páez-Mozo, F.M. Ortega, M. Piccinato, F.N. Silva, C.L.B. Guedes, E. Di Mauro, M.F. da Costa, A.T. Ota, J. Mol. Catal. A 339, 79 (2011)

    CAS  Google Scholar 

  32. M.Y. Duan, J. Li, M. Li, Z.Q. Zhang, C. Wang, Appl. Surf. Sci. 258, 5499 (2012)

    CAS  Google Scholar 

  33. J.-H. Cai, J.-W. Huang, H.-C. Yu, L.-N. Ji, Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  34. E. Gholamrezapor, A. Eslami, J. Mater. Sci. Mater. Electron. 30, 4705 (2019)

    CAS  Google Scholar 

  35. H. Huang, X. Gu, J. Zhou, K. Ji, H. Liu, Y. Feng, Catal. Commun. 11, 58 (2009)

    CAS  Google Scholar 

  36. C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu, Ceram. Int. 40, 7093 (2014)

    CAS  Google Scholar 

  37. M.Y. Chang, Y.H. Hsieh, T.C. Cheng, K.S. Yao, M.C. Wei, C.Y. Chang, Thin Solid Films 517, 3888 (2009)

    CAS  Google Scholar 

  38. M.A. Ahmed, Z.M. Abou-Gamra, H.A.A. Medien, M.A. Hamza, J. Photochem. Photobiol. B 176, 25 (2017)

    CAS  Google Scholar 

  39. Y. Khan, S.K. Durrani, M. Siddique, M. Mehmood, Mater. Lett. 65, 2224 (2011)

    CAS  Google Scholar 

  40. M. Kazemi, M.R. Mohammadizadeh, Chem. Eng. Res. Des. 90, 1473 (2012)

    CAS  Google Scholar 

  41. C. Han, J. Andersen, V. Likodimos, P. Falaras, J. Linkugel, D.D. Dionysiou, Catal. Today 224, 132 (2014)

    CAS  Google Scholar 

  42. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    CAS  Google Scholar 

  43. L.G. Joyner, E.P. Barrett, R. Skold, J. Am. Chem. Soc. 7, 3155 (1951)

    Google Scholar 

  44. Y. Chen, S.K. Lunsford, Y. Song, H. Ju, P. Falaras, V. Likodimos, A.G. Kontos, D.D. Dionysiou, Chem. Eng. J. 170, 518 (2011)

    CAS  Google Scholar 

  45. Y. Chen, E. Stathatos, D.D. Dionysiou, Surf. Coat. Technol. 202, 1944 (2008)

    CAS  Google Scholar 

  46. H. Feng, M.-H. Zhang, L.E. Yu, Appl. Catal. A 413–414, 238 (2012)

    Google Scholar 

  47. X.F. Lü, W.J. Sun, J. Li, W.X. Xu, F.X. Zhang, Spectrochim. Acta Part A 111, 161 (2013)

    Google Scholar 

  48. E.P. Melián, O.G. Díaz, J.D. Rodríguez, G. Colón, J.A. Navío, J.P. Peña, Appl. Catal. A 153, 411–412 (2012)

    Google Scholar 

  49. W. Vallejo, C. Diaz-Uribe, Á. Cantillo, J. Photochem. Photobiol. A 299, 80 (2015)

    CAS  Google Scholar 

  50. C. Belver, J. Bedia, M.A. Álvarez-Montero, J.J. Rodriguez, Catal. Today 266, 36 (2016)

    CAS  Google Scholar 

  51. S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, M.J. Sayagues, Appl. Catal. B 58, 193 (2005)

    CAS  Google Scholar 

  52. J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114, 783–792 (2016)

    Google Scholar 

  53. L. Tasseroul, S.D. Lambert, D. Eskenazi, M. Amoura, C.A. Páez, S. Hiligsmann, P. Thonart, B. Heinrichs, J. Photochem. Photobiol. A 272, 90 (2013)

    CAS  Google Scholar 

  54. Z.M. Abou-Gamra, M.A. Ahmed, M.A. Hamza, Nanotechnol. Environ. Eng. 2, 12 (2017)

    Google Scholar 

  55. Q. Wang, J. Li, Y. Bai, X. Lu, Y. Ding, S. Yin, H. Huang, H. Ma, F. Wang, B. Su, J. Photochem. Photobiol. B 126, 47 (2013)

    CAS  Google Scholar 

  56. A.M. Fadl, M.I. Abdou, S.A. Al-Elaa, M.A. Hamza, S.A. Sadeek, Prog. Org. Coat. 136, 105263 (2019)

    Google Scholar 

Download references

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.A., Abou-Gamra, Z.M., Ahmed, M.A. et al. The critical role of Tween 80 as a ‘green’ template on the physical properties and photocatalytic performance of TiO2 nanoparticles for Rhodamine B photodegradation. J Mater Sci: Mater Electron 31, 4650–4661 (2020). https://doi.org/10.1007/s10854-020-03017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03017-2

Navigation