MBE growth of InAs/GaAs quantum dots on sintered porous silicon substrates with high optical quality in the 1.3 μm band

Abstract

We report self-assembled InAs/GaAs quantum dots (QDs) monolithically grown on a compliant transferable silicon nanomembrane. The transferable silicon nanomembrane with flat continuous crystalline silicon layer formed via in situ porous silicon sintering is considered a low-cost seed for heteroepitaxy of free-standing single-crystalline foils for photovoltaic cells. In this paper, the compliant feature of transferable silicon nanomembrane has been exploited for direct growth of high-quality InAs/GaAs (QDs) by molecular beam epitaxy. Bright 1.3 µm room temperature photoluminescence from InAs/GaAs QDs has been obtained. The excellent structural and optical qualities of the obtained InAs/GaAs quantum dots offer great opportunities for realizing a low-cost and large-scale integration of III–V-based optoelectronic device on silicon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    L. Güniat, S. Martí-Sánchez, O. Garcia, M. Boscardin, D. Vindice, N. Tappy, M. Friedl, W. Kim, M. Zamani, L. Francaviglia, A. Balgarkashi, J.-B. Leran, J. Arbiol, A. Fontcuberta i Morral, ACS Nano 13(5), 5833–5840 (2019). https://doi.org/10.1021/acsnano.9b01546

    CAS  Article  Google Scholar 

  2. 2.

    R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Bläsi, D. Lackner, M. Hermle, G. Siefer, S.W. Glunz, A.W. Bett, F. Dimroth, Nat. Energy 3, 326–333 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    J. Wu, M. Tang, H. Liu, Photon. Res. 6(4), 321–325 (2018). https://doi.org/10.1364/PRJ.6.000321

    Article  Google Scholar 

  4. 4.

    J. Seidl, J.G. Gluschke, X. Yuan, S. Naureen, N. Shahid, H.H. Tan, C. Jagadish, A.P. Micolich, P. Caroff, Regaining. Nano Lett. 19(7), 4666–4677 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    C. Merckling, S. Jiang, Z. Liu, N. Waldron, G. Boccardi, R. Rooyackers, Z. Wang, B. Tian, M. Pantouvaki, N. Collaert, J. Van Campenhout, M. Heyns, D. Van Thourhout, W. Vandervorst, A. Thean, ECS Trans. 66(4), 107–116 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, R. Langer, Semicond. Sci. Technol. 33, 093002 (2018)

    Article  Google Scholar 

  7. 7.

    A. Zhou, Y. Ping Wang, C. Cornet, Y. Léger, L. Pédesseau, V. Favre-Nicolin, G.A. Chahine, T.U. Schülli, J. Eymery, M. Bahri, L. Largeau, G. Patriarche, O. Durand, A. Létoublon, J. Appl. Cryst. 52, 809–815 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    N. Ozaki, D. Childs, A. Boldin, D. Ikuno, K. Onoue, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, R. Hogg, Proc. SPIE 10939, Novel In-Plane Semiconductor Lasers XVIII, 1093911. https://doi.org/10.1117/12.2509984

  9. 9.

    S.-Y. Lin, Y.-J. Tsai, S.-C. Lee, Jpn. J. Appl. Phys. 40, L1290–L1292 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    Lukianov, K. Murakami, C. Takazawa, M. Ihara, Appl. Phys. Lett. 108, 213904 (2016)

    Article  Google Scholar 

  11. 11.

    Hariharsudan, S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysena, T. Bearda, I. Gordon, J. Szlufcik, J. Poortmans, Solar Energy Mater. Solar Cells 135, 113–123 (2015)

    Article  Google Scholar 

  12. 12.

    P.H.J. Kim, V. Depauw, G. Agostinelli, G. Beaucarne, J. Poortmans, Thin Solid Films 511–512, 411–414 (2006)

    Google Scholar 

  13. 13.

    C.S. Solanki, L. Carnel, K. Van Nieuwenhuysen, A. Ulyashin, N. Posthuma, G. Beaucarne, J. Poortmans, Prog. Photovolt.: Res. Appl. 13, 201–208 (2005)

    CAS  Article  Google Scholar 

  14. 14.

    Boucherif, N.P. Blanchard, P. Regreny, O. Marty, G. Guillot, G. Grenet, V. Lysenko, Thin Solid Films 518(9), 2466–2469 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    M. Aouassa, S. Escoubas, A. Ronda, L. Favre, S. Gouder, R. Mahamdi, E. Arbaoui, A. Halimaoui, I. Berbezier, Appl. Phys. Lett. 101, 233105 (2012)

    Article  Google Scholar 

  16. 16.

    M. Aouassa, I. Jadli, L.S. Hassayoun, H. Maaref, G. Panczer, L. Favre, A. Ronda, I. Berbezier, Superlatt. Microstruct. 112, 493–498 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    I. Berbezier, J.-N. Aqua, M. Aouassa, L. Favre, S. Escoubas, A. Gouyé, A. Ronda, Phys. Rev. B 90, 035315 (2014)

    Article  Google Scholar 

  18. 18.

    C.S. Solanki, R.R. Bilyalov, J. Poortmans, R. Mertens, Solar Energy Mater. Solar Cells 83(1), 101–113 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    S. Kitamura, M. Senshu, T. Katsuyama, Y. Hino, N. Ozaki, S. Ohkouchi, Y. Sugimoto, R.A. Hogg, Nanoscale Res. Lett. 10, 231 (2015)

    Article  Google Scholar 

  20. 20.

    Y. Hino, N. Ozaki, S. Ohkouchi, N. Ikeda, Y. Sugimoto, Growth of InAs/GaAs quantum dots with central emission wavelength of 1.05 μm using In-flush technique for broadband near-infrared light source. J. Cryst. Growth 378, 01–505 (2013)

    Article  Google Scholar 

  21. 21.

    F. Guffarth, R. Heitz, A. Schliwa, K. Pötschke, D. Bimberg, Observation of monolayer-splitting for InAs/GaAs quantum dots. Physica E 21, 326–330 (2004)

    CAS  Article  Google Scholar 

  22. 22.

    R. Heitz, F. Guffarth, K. Pötschke, A. Schliwa, D. Bimberg, N.D. Zakharov et al., Shell-like formation of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71(045325), 1–7 (2005)

    Google Scholar 

  23. 23.

    Y. Wan, Q. Li, Y. Geng, B. Shi, K.M. Lau, Appl. Phys. Lett. 107, 081106 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mansour Aouassa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aouassa, M., Franzò, G., Assaf, E. et al. MBE growth of InAs/GaAs quantum dots on sintered porous silicon substrates with high optical quality in the 1.3 μm band. J Mater Sci: Mater Electron 31, 4605–4610 (2020). https://doi.org/10.1007/s10854-020-03012-7

Download citation