Skip to main content
Log in

Holmium (Ho)-coated ZnO nanorods: an investigation of optoelectronic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, ZnO nanorods were synthesized by a simple and low-temperature hydrothermal method. Their surfaces were coated by Holmium using the drop-coating deposition technique. The morphology and the structural measurements showed that Holmium has coated completely the surface of ZnO; nanorods have hexagonal structure and their average diameter is about 500 nm, length up to 4 µm. The absorption properties result showed that Ho coated ZnO has an intense absorbance in the ultra-violet region and the optical band gap energy (Eg) of Ho-coated ZnO was calculated and was found to be 3.35 eV. The photoluminescence (PL) spectrums of nanostructures were analyzed to survey the effect of Ho coating on the optical luminescence properties of ZnO, finding that the ZnO nanorods have a strong visible emission centered around 560 nm, while Ho-coated ZnO nanorods have luminescence peaks in the UV and visible region. The excitations wavelength effect revealed that the blue emission can be excited by energies lower than the band gap of ZnO (3, 37 eV). Thus, it indicates that the Ho-coated ZnO nanorods can increase the absorption of UV light, which may hold great promise for the development of the optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Bai, X. Liu, D. Li, S. Chen, R. Luo, A. Chen, Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B 153, 110–116 (2011). https://doi.org/10.1016/j.snb.2010.10.010

    Article  CAS  Google Scholar 

  2. S. Roso, F. Güell, P.R. Martínez-Alanis, A. Urakawa, E. Llobet, Synthesis of ZnO nanowires and impacts of their orientation and defects on their gas sensing properties. Sens. Actuators B 230, 109–114 (2016). https://doi.org/10.1016/j.snb.2016.02.048

    Article  CAS  Google Scholar 

  3. H.S. Bhatti, A. Gupta, N.K. Verma, S. Kumar, Optical characterization of ZnO nanobelts. J. Mater. Sci. 17, 281–285 (2006). https://doi.org/10.1007/s10854-006-6943-z

    Article  CAS  Google Scholar 

  4. C. Klingshirn, ZnO: material, physics and applications. ChemPhysChem 8, 782–803 (2007). https://doi.org/10.1002/cphc.200700002

    Article  CAS  Google Scholar 

  5. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO—nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  CAS  Google Scholar 

  6. P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, J.G. Lu, ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 16, 5133–5137 (2004). https://doi.org/10.1021/cm049182c

    Article  CAS  Google Scholar 

  7. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  CAS  Google Scholar 

  8. N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl. Surf. Sci. 406, 339–347 (2017). https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  9. S. Worasawat, T. Masuzawa, Y. Hatanaka, Y. Neo, H. Mimura, W. Pecharapa, Synthesis and characterization of ZnO nanorods by hydrothermal method. Mater. Today 5, 10964–10969 (2018). https://doi.org/10.1016/j.matpr.2018.01.010

    Article  CAS  Google Scholar 

  10. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method. Proc. Chem. 19, 211–216 (2016). https://doi.org/10.1016/j.proche.2016.03.095

    Article  CAS  Google Scholar 

  11. M. Poornajar, P. Marashi, D.H. Fatmehsari, M.K. Esfahani, Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram. Int. 42(1), 173–184 (2016). https://doi.org/10.1016/j.ceramint.2015.08.073

    Article  CAS  Google Scholar 

  12. S.J. Kim, H.H. Kim, J.B. Kwon, J.G. Lee, O. Beom-Hoan, S.G. Lee, E.H. Lee, S.G. Park, Novel fabrication of various size ZnO nanorods using hydrothermal method. Microelectron. Eng. 87, 1534–1536 (2010). https://doi.org/10.1016/j.mee.2009.11.033

    Article  CAS  Google Scholar 

  13. B.J. Lawrie, R. Mu, R.F. Haglund, Selective purcell enhancement of defect emission in ZnO thin films. Opt. Lett. 37, 1538 (2012). https://doi.org/10.1364/OL.37.001538

    Article  CAS  Google Scholar 

  14. B.J. Lawrie, R.F. Haglund Jr., R. Mu, Enhancement of ZnO photoluminescence by localized and propagating surface plasmons. Opt. Express 17, 2565 (2009). https://doi.org/10.1364/OE.17.002565

    Article  CAS  Google Scholar 

  15. J. Petersen, C. Brimont, M. Gallart, G. Schmerber, P. Gilliot, C. Ulhaq-Bouillet, J.-L. Rehspringer, S. Colis, C. Becker, A. Slaoui, A. Dinia, Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. J. Appl. Phys. 107, 123522 (2010). https://doi.org/10.1063/1.3436628

    Article  CAS  Google Scholar 

  16. K. Fabitha, M.R. Rao, Ho 3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures. J. Opt. Soc. Am. B 34(12), 2485–2492 (2017). https://doi.org/10.1364/JOSAB.34.002485

    Article  CAS  Google Scholar 

  17. S. Babu, Y.C. Ratnakaram, Emission characteristics of holmium ions in fluoro-phosphate glasses for photonic applications (Melville, AIP Publishing LLC, 2016), p. 070001

    Google Scholar 

  18. G.M. Rai, M.A. Iqbal, Y. Xu, I.G. Will, W. Zhang, Influence of rare earth Ho3+ doping on structural, microstructure and magnetic properties of ZnO bulk and thin film systems. Chin. J. Chem. Phys. 24(3), 353–357 (2011). https://doi.org/10.1088/1674-0068/24/03/353-357

    Article  CAS  Google Scholar 

  19. A. Khataee, S. Saadi, B. Vahid, S.W. Joo, Sonochemical synthesis of holmium doped zinc oxide nanoparticles: characterization, sonocatalysis of reactive orange 29 and kinetic study. J. Ind. Eng. Chem. 35, 167–176 (2016). https://doi.org/10.1016/j.jiec.2015.12.028

    Article  CAS  Google Scholar 

  20. M. Popa, G. Schmerber, D. Toloman, M.S. Gabor, A. Mesaros, T. Petrişor, Magnetic and electrical properties of undoped and holmium doped ZnO thin films grown by sol-gel method. Adv. Eng. Forum 8–9, 301–308 (2013). https://doi.org/10.4028/www.scientific.net/AEF.8-9.301

    Article  CAS  Google Scholar 

  21. X. Li, Y. Wang, Structure and photoluminescence properties of Ag-coated ZnO nano-needles. J. Alloy Compd. 509, 5765–5768 (2011). https://doi.org/10.1016/j.jallcom.2011.01.118

    Article  CAS  Google Scholar 

  22. Y. Zhang, X. Li, X. Ren, Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films. Opt. Express 17, 8735 (2009). https://doi.org/10.1364/OE.17.008735

    Article  CAS  Google Scholar 

  23. B. Hymavathi, B.R. Kumar, T.S. Rao, Temperature dependent structural and optical properties of nanostructured Cr doped CdO thin films prepared by DC reactive magnetron sputtering. Proc. Mater. Sci. 6, 1668–1673 (2014). https://doi.org/10.1016/j.mspro.2014.07.152

    Article  CAS  Google Scholar 

  24. M. Achehboune, M. Khenfouch, I. Boukhoubza, B. Mothudi, I. Zorkani, A. Jorio, Structural and optical characterization of holmium coated ZnO nanorods. J. Phys. 984, 012007 (2018). https://doi.org/10.1088/1742-6596/984/1/012007

    Article  CAS  Google Scholar 

  25. N.R. Panda, D. Sahu, B.S. Acharya, P. Nayak, High UV absorption efficiency of nanocrystalline ZnO synthesized by ultrasound assisted wet chemical method. Curr. Appl. Phys. 15, 389–396 (2015). https://doi.org/10.1016/j.cap.2015.01.014

    Article  Google Scholar 

  26. S. Ameen, M.S. Akhtar, H.S. Shin, Growth and characterization of nanospikes decorated ZnO sheets and their solar cell application. Chem. Eng. J. 195, 307–313 (2012). https://doi.org/10.1016/j.cej.2012.04.081

    Article  CAS  Google Scholar 

  27. B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, S.H. Chaki, Studies on ZnO nanorods synthesized by hydrothermal method and their characterization. Жypнaл Haнo-Ta Eлeктpoннoї Фiзики. 5(4), 04077 (2013)

    Google Scholar 

  28. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi (c). 3, 3577–3581 (2006). https://doi.org/10.1002/pssc.200672164

    Article  CAS  Google Scholar 

  29. P. Pandey, R. Kurchania, F.Z. Haque, Optical studies of europium-doped ZnO nanoparticles prepared by sol-gel technique. J. Adv. Phys. 3, 104–110 (2014). https://doi.org/10.1166/jap.2014.1120

    Article  Google Scholar 

  30. X. He, H. Qian, Q. Zhi, M. Zhang, J. Luo, R. He, Q. Zeng, Investigation on the enhancement of ultraviolet emission in Ag–ZnO microrods. Appl. Surf. Sci. 283, 571–576 (2013). https://doi.org/10.1016/j.apsusc.2013.06.147

    Article  CAS  Google Scholar 

  31. X. Zeng, J. Yuan, L. Zhang, Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres. J. Phys. Chem. C 112, 3503–3508 (2008). https://doi.org/10.1021/jp0768118

    Article  CAS  Google Scholar 

  32. P.K. Sharma, R.K. Dutta, A.C. Pandey, Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles. J. Colloid Interface Sci. 345, 149–153 (2010). https://doi.org/10.1016/j.jcis.2010.01.050

    Article  CAS  Google Scholar 

  33. S. Kim, M.S. Kim, G. Nam, J.-Y. Leem, Structural and blue emission properties of Al-doped ZnO nanorod array thin films grown by hydrothermal method. Electron Mater. Lett. 8, 445–450 (2012). https://doi.org/10.1007/s13391-012-2071-5

    Article  CAS  Google Scholar 

  34. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285–2287 (2001). https://doi.org/10.1063/1.1361288

    Article  CAS  Google Scholar 

  35. R. Das, A. Kumar, Y. Kumar, S. Sen, P.M. Shirage, Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Adv. 5, 60365–60372 (2015). https://doi.org/10.1039/C5RA07135F

    Article  CAS  Google Scholar 

  36. G. Ahmed, M. Hanif, L. Zhao, M. Hussain, J. Khan, Z. Liu, Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis. J. Mol. Catal. A 425, 310–321 (2016). https://doi.org/10.1016/j.molcata.2016.10.026

    Article  CAS  Google Scholar 

  37. P.V. Pimpliskar, S.C. Motekar, G.G. Umarji, W. Lee, S.S. Arbuj, Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Photochem. Photobiol. Sci. 18, 1503–1511 (2019). https://doi.org/10.1039/C9PP00099B

    Article  CAS  Google Scholar 

  38. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Synthesis and characterization of undoped, Al and/or Ho doped ZnO thin Films. Ceram. Int. 39, 5535–5543 (2013). https://doi.org/10.1016/j.ceramint.2012.12.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty of Sciences Dhar el Mahraz USMBA (Morocco), University of South Africa Department of Physics (South Africa) and Africa Graphene Center (AGC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Achehboune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achehboune, M., Khenfouch, M., Boukhoubza, I. et al. Holmium (Ho)-coated ZnO nanorods: an investigation of optoelectronic properties. J Mater Sci: Mater Electron 31, 4595–4604 (2020). https://doi.org/10.1007/s10854-020-03011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03011-8

Navigation