Skip to main content
Log in

Influence of Zn(II) on the structure, magnetic and dielectric dynamics of nano-LaFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrate in detail the influence of divalent non-magnetic metal ion Zn on the structural, magnetic ordering as well as the dielectric dynamics of nano-sized LaFeO3. Introduction of Zn at Fe site distorts the FeO6 octahedron near it evidencing from a shift in the most intense peak towards lower angle. Subsequent broadening of peaks signifies a lower particle size which is further supported by micrographs. With field history, temperature-dependent magnetization shows that the doped samples acquire a non-ergodic state at low temperature and the incompleteness of the phase transition even at very high temperature. The isothermal magnetization depicts a significant increase in magnetization at higher field with a decrease in coercivity. Extensive impedance and electrical modulus analysis are carried out to know the exact conduction process and relaxation mechanism adopted by the doping system. Impedance spectra reveal a non-Debye type of relaxation mechanism and with increase of Zn concentration and temperature, grain boundary effect dominates over grain effect. This grain and grain boundary effect is further confirmed through electrical modulus Nyquist plots. The activation energy values of grain and grain boundary are 0.37 eV and 0.47 eV for x = 0.1, 0.37 eV, 0.40 eV for x = 0.2 and 0.28 eV, 0.38 eV for x = 0.3, respectively. Accordingly, the doping system agreed with a p-type polaronic hopping. Furthermore, the frequency-dependent electrical conductivity data are explained in the framework of both Jonscher power law and Jump relaxation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, J. Appl. Phys. 85, 5828 (1999)

    Article  CAS  Google Scholar 

  2. E. Li, Z. Feng, B. Kang, J. Zhang, W. Ren, S. Cao, J. Alloys Compd. 811(12), 152043–5451 (2019). https://doi.org/10.3390/ijms16035434

    Article  CAS  Google Scholar 

  3. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Phys. Lett. A 382, 3018 (2018)

    Article  CAS  Google Scholar 

  4. G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35, 915 (1964)

    Article  CAS  Google Scholar 

  5. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, J. Alloys. Comp. 583, 21 (2014)

    Article  CAS  Google Scholar 

  6. K.K. Bhagav, S. Ram, S.B. Majumdar, J. Appl. Phys. 115, 204109 (2014)

    Article  Google Scholar 

  7. V.M. Gaikwad, S.A. Acharya, RSC Adv. 5, 14366 (2015)

    Article  CAS  Google Scholar 

  8. T. Lakshmana Rao, M.K. Pradhan, U.K. Goutam, V. Siruguri , V.R. Reddy, S. Dash, J. Appl. Phys. 126, 064104 (2019)

  9. W. Koebler, E. Wallan, M. Wilkinson, Phys. Rev. 118, 58 (1960)

    Article  Google Scholar 

  10. H.Y. Hwang, S.W. Choeng, R.G. Radaelli, M. Marezio, B. Batlog, Phys. Rev. Lett. 75, 914 (1995)

    Article  CAS  Google Scholar 

  11. J.N. Kuhn, P.H. Matter, J.M. Millet, R.B. Watson, U.S. Ozkan, Macrophage dysfunction in the pathogenesis and treatment of asthma. J. Phys. Chem. C 112(3), 12468 (2008). https://doi.org/10.1183/13993003.00196-2017

    Article  CAS  Google Scholar 

  12. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mat. Res. Bull. 48, 4506 (2013)

    Article  CAS  Google Scholar 

  13. D. Triyono, H. Laysandra, H. L. Liu, J. Mater. Sci.: Mater. Electron. https://doi.org/10.1007/s10854-018-0525-8

    Google Scholar 

  14. S. Komine, E. Iguchi, J. Phys. Chem. Solids 68, 1504–10 (2007). https://doi.org/10.1155/2013/632049

    Article  CAS  Google Scholar 

  15. A. Benali, S. Aziz, M. Bejar, E. Dhahri, M.F.P. Graca, Ceram. Int. 40, 14367 (2014)

    Article  CAS  Google Scholar 

  16. K. Mukhopadhay, A.S. Mohapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)

    Article  Google Scholar 

  17. Z. Yang, Z. Huang, L. Ye, X. Xie, Phys. Rev. B 60, 15674 (1999)

    Article  CAS  Google Scholar 

  18. A. L. Patterson, Phys. Rev. 56, 978 (1939) and reference there in

    Article  CAS  Google Scholar 

  19. F.J. Berry, X. Ren, J.R. Gancedo, J.F. Marco, Hyperfine Interact. 156, 335 (2004)

  20. A. Jones, M.S. Islam, J. Phys. Chem. C 112, 4455 (2007)

    Article  CAS  Google Scholar 

  21. D. Wang, M. Gong, J. Appl. Phys 109, 114304 (2011)

    Article  Google Scholar 

  22. P.A. Joy, P.S. Anil Kumar, S.K. Date, J. Phys. 10, 11049 (1998)

  23. T. Lakshmana Rao, M.K. Pradhan, M. Chandrasekhar, P.V. Ramakrishna, S. Dash, J. Phys. 31, 345803 (2019) and reference there in.

  24. H. Ahmadv, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, J. Phys. D: Appl. Phys. 43, 245002 (2010)

    Article  Google Scholar 

  25. M.M. Costa, G.F.M. Pires Jr., J. Terezo, M.P.F. Grac, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  26. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiments and Applications, 2nd edn. (Wiley, Hoboken, 2005), p. 46

  27. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84(14), 531–17546 (2001). https://doi.org/10.18632/oncotarget.8162

    Article  CAS  Google Scholar 

  28. E. Iguchi, N. Nakamura, A. Aoki, J. Phys. Chem. Solids 58, 755 (1997)

    Article  CAS  Google Scholar 

  29. A. Rahman, M.A. Rafiq, K. Maaz, S. Karim, S.O. Cho, M.M. Hasan, J. Appl. Phys. 112, 063718 (2012)

    Article  Google Scholar 

  30. T. Lakshmana Rao, M.K. Pradhan, M. Chandrasekhar, P.V. Ramakrishna, S. Dash, J. Phys. 31, 345803 (2019)

  31. J.R. Macdonald (ed.), Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  32. S. Saha, T.P. Sinha, Phys. Rev. B 65, 1341 (2005)

    Google Scholar 

  33. B.V.R. Chowdari, R. Gopalkrishnan, Solid State Ion. 23, 225 (1987)

    Article  CAS  Google Scholar 

  34. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D 43, 155401 (2010)

  35. W. Li, R.W. Schwartza, Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  36. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  37. W. Dieterich, P. Maass, Chem. Phys. 284, 439 (2002)

    Article  CAS  Google Scholar 

  38. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B. 77, 014111 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, M. K. Pradhan, acknowledges UGC-DAE CSR Mumbai for Fellowship under the Project Grant of CRS/M/226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmana Rao, T., Pradhan, M.K., Singh, S. et al. Influence of Zn(II) on the structure, magnetic and dielectric dynamics of nano-LaFeO3. J Mater Sci: Mater Electron 31, 4542–4553 (2020). https://doi.org/10.1007/s10854-020-03005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03005-6

Navigation