Skip to main content
Log in

Thermal annealing of AlN films for piezoelectric applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminum nitride is an excellent electrical insulator and important piezoelectric material making it suitable for a wide range of applications in electronics and optoelectronics. However, to exhibit and preserve those piezoelectric properties, care has to be taken during manufacturing process. Indeed, the c-axis crystalline orientation of AlN is a necessary condition for piezoelectricity. Therefore, the goal of this paper is to compare AlN films grown on (100) silicon substrate by pulsed reactive DC sputtering at 400 °C on top of three different metallic underlayer electrodes (Ti/Pt, Cr/Pt, and AlN/Cr/Pt) by preserving the crystalline properties not only at room temperature but also at high temperatures. Among all deposited AlN films on top of the metallic underlayer electrode, only AlN/Cr/Pt has kept its crystallinity up to 950 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Jin, B. Feng, S. Dong, C. Zhou, J. Zhou, Y. Yang, T. Ren, J. Luo, D. Wang, J. Electron. Mater. 41(7), 1948 (2012)

    Article  CAS  Google Scholar 

  2. T. Hu, S. Mao, C. Chao, M. Wu, H. Huang, D. Gan, J. Electron. Mater. 36(1), 81 (2007)

    Article  CAS  Google Scholar 

  3. E. Herth, L. Valbin, F. Lardet-Vieudrin, E. Algré, Microsyst. Technol. 23(9), 3873 (2017). https://doi.org/10.1007/s00542-015-2727-9

    Article  CAS  Google Scholar 

  4. O. Mareschal, S. Loiseau, A. Fougerat, L. Valbin, G. Lissorgues, S. Saez, C. Dolabdjian, R. Bouregba, G. Poullain, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 513 (2010). https://doi.org/10.1109/TUFFC.2010.1441

    Article  Google Scholar 

  5. E. Herth, E. Algré, J.Y. Rauch, J.C. Gerbedoen, N. Defrance, P. Delobelle, Phys. Stat. Solidi A 213(1), 114 (2016). https://doi.org/10.1002/pssa.201532302

    Article  CAS  Google Scholar 

  6. A. Pandey, S. Dutta, R. Prakash, R. Raman, A.K. Kapoor, D. Kaur, J. Electron. Mater. 47(2), 1405 (2018)

    Article  CAS  Google Scholar 

  7. K. Jones, M. Derenge, T. Zheleva, K. Kirchner, M. Ervin, M. Wood, R. Vispute, R. Sharma, T. Venkatesan, J. Electron. Mater. 29(3), 262 (2000)

    Article  CAS  Google Scholar 

  8. K. Jones, M. Derenge, P. Shah, T. Zheleva, M. Ervin, K. Kirchner, M. Wood, C. Thomas, M. Spencer, O. Holland et al., J. Electron. Mater. 31(6), 568 (2002)

    Article  CAS  Google Scholar 

  9. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41(4), 299 (1994). https://doi.org/10.1016/0003-682X(94)90091-4

    Article  Google Scholar 

  10. R. Roth, F. Field, J. Clark, J. Comput. Aided Mater. Des. 1(3), 325 (1994). https://doi.org/10.1007/BF00712855

    Article  Google Scholar 

  11. M.F. Ashby, D. Cebon, J. Phys. IV 03(C7), C7 (1993). https://doi.org/10.1051/jp4:1993701

    Article  Google Scholar 

  12. M.F. Ashby, Acta Mater. 48(1), 359 (2000). https://doi.org/10.1016/S1359-6454(99)00304-3

    Article  CAS  Google Scholar 

  13. J. Qian, Y.P. Zhao, Mater. Des. 23(7), 619 (2002). https://doi.org/10.1016/S0261-3069(02)00051-1

    Article  CAS  Google Scholar 

  14. M.F. Ashby, Y.J.M. Bréchet, D. Cebon, L. Salvo, Mater. Des. 25(1), 51 (2004). https://doi.org/10.1016/S0261-3069(03)00159-6

    Article  Google Scholar 

  15. D. Quinn, S. Spearing, M. Ashby, N.A. Fleck, J. Microelectromech. Syst. 15(5), 1039 (2006). https://doi.org/10.1109/JMEMS.2006.880292

    Article  Google Scholar 

  16. R.V. Rao, Mater. Sci. Eng. A 431(1–2), 248 (2006). https://doi.org/10.1016/j.msea.2006.06.006

    Article  CAS  Google Scholar 

  17. G. Guisbiers, E. Herth, B. Legrand, N. Rolland, T. Lasri, L. Buchaillot, Microelectron. Eng. 87(9), 1792 (2010). https://doi.org/10.1016/j.mee.2009.10.016

    Article  CAS  Google Scholar 

  18. K. Kano, K. Arakawa, Y. Takeuchi, M. Akiyama, N. Ueno, N. Kawahara, Sens. Actuators A 130–131, 397 (2006). https://doi.org/10.1016/j.sna.2005.12.047

    Article  CAS  Google Scholar 

  19. A.T. Tran, O. Wunnicke, G. Pandraud, M.D. Nguyen, H. Schellevis, P.M. Sarro, Sens. Actuators A 202, 118 (2013). https://doi.org/10.1016/j.sna.2013.01.047

    Article  CAS  Google Scholar 

  20. C. Zuo, N. Sinha, G. Piazza, Sens. Actuators A 160(1–2), 132 (2010). https://doi.org/10.1016/j.sna.2010.04.011

    Article  CAS  Google Scholar 

  21. E. Herth, F. Lardet-Vieudrin, L. Valbin, E. Algré, in Proceedings of the 2015 Symposium on Design, Test. Integration and Packaging of MEMS/MOEMS (DTIP), vol. 2015 (2015), pp. 1–5. https://doi.org/10.1109/DTIP.2015.7160996

  22. A. Andrei, K. Krupa, M. Jozwik, P. Delobelle, L. Hirsinger, C. Gorecki, L. Nieradko, C. Meunier, Sens. Actuators A 141(2), 565 (2008). https://doi.org/10.1016/j.sna.2007.10.041

    Article  CAS  Google Scholar 

  23. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza, Appl. Phys. Lett. 95(5), 053106 (2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5198318

    Article  Google Scholar 

  24. R. Lanz, P. Muralt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(6), 938 (2005)

    Article  Google Scholar 

  25. A. Samarao, F. Ayazi, in Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (2011), pp. 169–172. https://doi.org/10.1109/MEMSYS.2011.5734388

  26. D.T. Phan, G.S. Chung, Appl. Surf. Sci. 257(20), 8696 (2011). https://doi.org/10.1016/j.apsusc.2011.05.050

    Article  CAS  Google Scholar 

  27. R. Yoshizawa, H. Miyake, K. Hiramatsu, Jpn. J. Appl. Phys. 57(1S), 01AD05 (2017). https://doi.org/10.7567/jjap.57.01ad05

    Article  Google Scholar 

  28. M.X. Wang, F.J. Xu, N. Xie, Y.H. Sun, B.Y. Liu, Z.X. Qin, X.Q. Wang, B. Shen, CrystEngComm 20(41), 6613 (2018). https://doi.org/10.1039/C8CE00967H

    Article  CAS  Google Scholar 

  29. U. Schmid, H. Seidel, J. Vac. Sci. Technol. A 24(6), 2139 (2006). https://doi.org/10.1116/1.2359739

    Article  CAS  Google Scholar 

  30. G. Guisbiers, L. Buchaillot, Nanotechnology 19(43), 435701 (2008). https://doi.org/10.1088/0957-4484/19/43/435701

    Article  CAS  Google Scholar 

  31. E. Herth, E. Algré, B. Legrand, L. Buchaillot, Microelectron. Eng. 88(5), 724 (2011). https://doi.org/10.1016/j.mee.2010.06.032

    Article  CAS  Google Scholar 

  32. J.O. Olowolafe, R.E. Jones, A.C. Campbell, R.I. Hegde, C.J. Mogab, R.B. Gregory, J. Appl. Phys. 73(4), 1764 (1993). https://doi.org/10.1063/1.353212

    Article  CAS  Google Scholar 

  33. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78(1), 013705 (2007). https://doi.org/10.1063/1.2432410

    Article  CAS  Google Scholar 

  34. G. Guisbiers, O.V. Overschelde, M. Wautelet, P. Leclère, R. Lazzaroni, J. Phys. D: Appl. Phys. 40(4), 1077 (2007). https://doi.org/10.1088/0022-3727/40/4/024

    Article  CAS  Google Scholar 

  35. G. Guisbiers, L. Buchaillot, J. Phys. D: Appl. Phys. 41(17), 172001 (2008). https://doi.org/10.1088/0022-3727/41/17/172001

    Article  CAS  Google Scholar 

  36. G. Guisbiers, D. Liu, Q. Jiang, L. Buchaillot, Phys. Chem. Chem. Phys. 12(26), 7203 (2010). https://doi.org/10.1039/C002496A

    Article  CAS  Google Scholar 

  37. N. Naumenko, P. Nicolay, Appl. Phys. Lett. 111(7), 073507 (2017). https://doi.org/10.1063/1.4985582

    Article  CAS  Google Scholar 

  38. T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, M. Oudich, Appl. Phys. Lett. 96(20), 203503 (2010). https://doi.org/10.1063/1.3430042

    Article  CAS  Google Scholar 

  39. L. Vergara, J. Olivares, E. Iborra, M. Clement, A. Sanz-Hervás, J. Sangrador, Thin Solid Films 515(4), 1814 (2006). https://doi.org/10.1016/j.tsf.2006.07.002

    Article  CAS  Google Scholar 

  40. H. Miyake, C.H. Lin, K. Tokoro, K. Hiramatsu, J. Cryst. Growth 456, 155 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.028

    Article  CAS  Google Scholar 

  41. B. Liu, J. Gao, K. Wu, C. Liu, Solid State Commun. 149(17–18), 715 (2009)

    Article  CAS  Google Scholar 

  42. F. Medjani, R. Sanjines, G. Allidi, A. Karimi, Thin Solid Films 515(1), 260 (2006)

    Article  CAS  Google Scholar 

  43. S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, RG. Polcawich, Energy Harvest. Syst. 4(1), 3 (2017). https://doi.org/10.1515/ehs-2016-0028. https://www.degruyter.com/view/j/ehs.2017.4.issue-1/ehs-2016-0028/ehs-2016-0028.xml

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the French RENATECH network with FEMTO-ST and C2N as technological facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Herth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herth, E., Fall, D., Rauch, JY. et al. Thermal annealing of AlN films for piezoelectric applications. J Mater Sci: Mater Electron 31, 4473–4478 (2020). https://doi.org/10.1007/s10854-020-02984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02984-w

Navigation