Skip to main content
Log in

Controlling the surface morphologies, structural and magnetic properties of electrochemically fabricated Ni–Co thin film samples via seed layer deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the influence of the seed layer deposition on the surface morphologies, structural and magnetic features of the thin film samples of Ni–Co was investigated and results are reported. The samples were produced on indium tin oxide (ITO)-coated glass substrates with and without a seed layer by electrochemical deposition technique under a constant deposition potential. To explore the effect of the seed layer current density (SLCD) on thin films, prior to actual deposition, Ni–Co seed layers were introduced on the ITO substrates at varying current densities. The EDX analysis indicated that the samples exhibited identical deposit compositions and an anomalous co-deposition behavior regardless of the SLCD. The Ni–Co samples fabricated under this study had a face centered cubic (fcc) phase structure with preferred crystallographic orientation being in the [111] direction perpendicular to the sample plane. Furthermore, the crystallite size, crystallinity, particle size and surface roughness of the samples showed a strong dependency on applied SLCD. All Ni–Co samples, irrespective of the SLCD, featured stripe magnetic domain structure and in-plane magnetic hysteresis loop with an out-of-plane magnetization component. It was also observed that while a semi-hard magnetic characteristic was detected in all samples, the coercive field varied with the SLCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.M. Maksimović, U. Lačnjevac, M.M. Stoiljković, M.G. Pavlović, V.D. Jović, Morphology and composition of Ni–Co electrodeposited powders. Mater. Charact. 62, 1173–1179 (2011)

    Google Scholar 

  2. M.M. Kamel, Anomalous co-deposition of Co–Ni: alloys from gluconate baths. J. Appl. Electrochem. 37, 483–489 (2007)

    CAS  Google Scholar 

  3. C. Lupi, A. Dell'Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings. Surf. Coat. Technol. 205, 5394–5399 (2011)

    CAS  Google Scholar 

  4. C.K. Chung, W.T. Chang, Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni–Co films. Thin solid Films 517, 4800–4804 (2009)

    CAS  Google Scholar 

  5. L.D. Rafailović, W. Artner, G.E. Nauer, M.D. Minić, Structure, morphology and thermal stability of electrochemically obtained Ni–Co deposits. Thermochim. Acta 496, 110–116 (2009)

    Google Scholar 

  6. G.Y. Qiao, F.R. Xiao, J. Yang, L.N. Sun, L.J. Guo, T.F. Jing, Synthesis of bulk nanocrystalline CoNi alloys and study of their microstructure and magnetic properties. Mater. Manuf. Process. 27, 1154–1159 (2012)

    CAS  Google Scholar 

  7. L.D. Rafailović, M.D. Minić, Deposition and characterisation of nanostructured nickel–cobalt alloys. Hem. ind. 63, 557–569 (2009)

    Google Scholar 

  8. D–.Y. Park, K.S. Park, J.M. Ko, D–.H. Cho, S.H. Lim, W.Y. Kim, B.Y. Yoo, N.V. Myung, Electrodeposited Ni1 – xCox nanocrystalline thin films structure–property relationships. J. Electrochem. Soc. 153, C814–C821 (2006)

    CAS  Google Scholar 

  9. C.K. Chung, W.T. Chang, M.W. Liao, On work function and characteristics of anomalous electrodeposited nickel–cobalt films. Thin Solid Films 519, 2075–2078 (2011)

    CAS  Google Scholar 

  10. B. Bakhit, A. Akbari, Nanocrystalline Ni–Co alloy coatings: electrodeposition using horizontal electrodes and corrosion resistance. J. Coat. Technol. Res. 10, 285–295 (2013)

    CAS  Google Scholar 

  11. S.I. Tanase, D. Pinzaru (Tanase), P. Pascariu, M. Dobromir, A.V. Sandu, V. Georgescu, Effect of nitrogen addition on the morphology, magnetic and magnetoresistance properties of electrodeposited Co, Ni and Co–Ni granular thin films on aluminum substrates. Mater. Chem. Phys. 139, 327–333 (2011)

  12. D–.Y. Park, R.Y. Song, J.M. Ko, B.Y. Yoo, N.V. Myung, Stress changes of nanocrystalline CoNi thin films electrodeposited from chloride baths. Electrochem. Solid State Lett. 8, C23–C25 (2005)

    CAS  Google Scholar 

  13. O. Ergeneman, K.M. Sivaraman, S. Páne, E. Pellicer, A. Teleki, A.M. Hirt, M.D. Baró, B.J. Nelson, Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine. Electrochim. Acta 56, 1399–1408 (2011)

    CAS  Google Scholar 

  14. U. Sarac, M.C. Baykul, Y. Uguz, Differences observed in the phase structure, grain size–shape, and coercivity field of electrochemically deposited Ni–Co thin films with different Co contents. J. Supercond. Nov. Magn. 28, 3105–3110 (2015)

    CAS  Google Scholar 

  15. L. Tian, J. Xu, C. Qiang, The electrodeposition behaviors and magnetic properties of Ni–Co films. Appl. Surf. Sci. 257, 4689–4694 (2011)

    CAS  Google Scholar 

  16. L. Tian, J. Xu, S. Xiao, The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition. Vacuum 86, 27–33 (2011)

    CAS  Google Scholar 

  17. M. Zamani, A. Amadeh, S. Lari Baghal, Effect of Co content on electrodeposition mechanism and mechanical properties of electrodeposited Ni–Co alloy. Trans. Nonferr. Met. Soc. China 26, 484–491 (2016)

    CAS  Google Scholar 

  18. L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits. Appl. Surf. Sci. 242, 326–332 (2005)

    CAS  Google Scholar 

  19. R. Oriňaková, A. Oriňák, G. Vering, I. Talian, R.M. Smith, H.F. Arlinghaus, Influence of pH on the electrolytic deposition of Ni–Co films. Thin Solid Films 516, 3045–3050 (2008)

    Google Scholar 

  20. J. Vazquez-Arenas, L. Altamirano-Garcia, T. Treeatanaphitak, R. Luna-Sánchez, R. Cabrera-Sierra, Co–Ni alloy electrodeposition under different conditions of pH, current and composition. Electrochim. Acta 65, 234–243 (2012)

    CAS  Google Scholar 

  21. C. Ma, S.C. Wang, C.T.J. Low, L.P. Wang, F.C. Walsh, Effects of additives on microstructure and properties of electrodeposited nanocrystalline Ni–Co alloy coatings of high cobalt content. Trans. Inst. Met. Finish. 92, 189–195 (2014)

    CAS  Google Scholar 

  22. Sh. Hassani, K. Raeissi, M.A. Golozar, Effects of saccharin on the electrodeposition of Ni–Co nanocrystalline coatings. J. Appl. Electrochem. 38, 689–694 (2008)

    CAS  Google Scholar 

  23. U. Sarac, M.C. Baykul, Y. Uguz, The influence of applied current density on microstructural, magnetic, and morphological properties of electrodeposited nanocrystalline Ni–Co thin films. J. Supercond. Nov. Magn. 28, 1041–1045 (2015)

    CAS  Google Scholar 

  24. F.M. Bouzit, A. Nemamcha, H. Moumeni, J.L. Rehspringer, Morphology and Rietveld analysis of nanostructured Co–Ni electrodeposited thin films obtained at different current densities. Surf. Coat. Technol. 315, 172–180 (2017)

    CAS  Google Scholar 

  25. R. Özdemir, Effect of the applied current density on the structural and magnetic properties of the electrodeposited cobalt-nickel alloy thin films. Acta Phys. Pol. A 132, 770–774 (2017)

    Google Scholar 

  26. A. Karpuz, H. Kockar, M. Alper, The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films. Appl. Surf. Sci. 257, 3632–3635 (2011)

    CAS  Google Scholar 

  27. L.D. Rafailović, D.M. Minić, H.P. Karnthaler, J. Wosik, T. Trišović, G.E. Nauer, Study of the dendritic growth of Ni–Co alloys electrodeposited on Cu substrates. J. Electrochem. Soc. 29, D295–D301 (2010)

    Google Scholar 

  28. Gh. Barati Darband, M. Aliofkhazraei, A. Sabour Rouhaghdam, M.A. Kiani, Three-dimensional Ni–Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 465, 846–862 (2019)

    Google Scholar 

  29. M.M. Kamel, Anomalous co-deposition of Co–Ni: alloys from gluconate baths. J. Appl. Electrochem. 37, 483–489 (2007)

    CAS  Google Scholar 

  30. B.G. Tóth, L. Péter, A. Révész, J. Pádár, I. Bakonyi, Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni–Co alloys. Eur. Phys. J. B 75, 167–177 (2010)

    Google Scholar 

  31. U. Sarac, M.C. Baykul, Characterization of nanocrystalline Ni–Cu thin films electrodeposited onto ITO coated glass substrates: effect of pretreatment current density. J. Mater. Sci. Mater. Electron. 24, 2777–2784 (2013)

    CAS  Google Scholar 

  32. A. Brenner, Electrodeposition of Alloys Principles and Practice (Academic, New York, 1963)

    Google Scholar 

  33. T. Nishizawa, K. Ishida, The Co–Ni (cobalt–nickel) system. Bull. Alloy Phase Diagrams 4, 390–395 (1983)

    Google Scholar 

  34. J. Wang, W. Lei, Y. Deng, Z. Xue, H. Qian, W. Liu, X. Li, Effect of current density on microstructure and corrosion resistance of Ni graphene oxide composite coating electrodeposited under supercritical carbon dioxide. Surf. Coat. Technol. 358, 765–774 (2019)

    CAS  Google Scholar 

  35. L. Feng, Y.-Y. Ren, Y.-H. Zhang, S. Wang, L. Li, Direct correlations among the grain size, texture, and indentation behavior of nanocrystalline nickel coatings. Metals 9, 1–17 (2019)

    Google Scholar 

  36. Z. Xue, W. Lei, Y. Wang, H. Qian, Q. Li, Effect of pulse duty cycle on mechanical properties and microstructure of nickel–graphene composite coating produced by pulse electrodeposition under supercritical carbon dioxide. Surf. Coat. Technol. 325, 417–428 (2017)

    CAS  Google Scholar 

  37. C. Savall, A. Godon, J. Creus, X. Feaugas, Influence of deposition parameters on microstructure and contamination of electrodeposited nickel coatings from additive-free sulphamate bath. Surf. Coat. Technol. 206, 4394–4402 (2012)

    CAS  Google Scholar 

  38. M. Mirak, A. Akbari, Microstructural characterization of electrodeposited and heat-treated Ni–B coatings. Surf. Coat. Technol. 349, 442–451 (2018)

    CAS  Google Scholar 

  39. N. Sulianu, F. Brînzã, Structure–properties relationships in electrodeposited Ni–W thin films with columnar nanocrystallites. J. Optoelectron. Adv. Mater. 5, 421–427 (2003)

    Google Scholar 

  40. A. Gayen, G.Kr. Prasad, K. Umadevi, J.A. Chelvane, P. Alagarsamy, Interlayer coupling in symmetric and asymmetric CoFeB based trilayer films with different domain structures: role of spacer layer and temperature. J. Magn. Magn. Mater. 462, 29–40 (2018)

    CAS  Google Scholar 

  41. S.W. Fackler, M.J. Donahue, T. Gao, P.N.A. Nero, S.-W. Cheong, J. Cumings, I. Takeuchi, Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl. Phys. Lett. 105, 212905 (2014)

    Google Scholar 

  42. S. Voltan, C. Cirillo, H.J. Snijders, K. Lahabi, A. García-Santiago, J.M. Hernández, C. Attanasio, J. Aarts, Emergence of the stripe-domain phase in patterned Permalloy films. Phys. Rev. B 94, 094406 (2016)

    Google Scholar 

  43. L. Sun, J.H. Liang, X. Xiao, C. Zhou, G. Chen, Y. Huo, Y.Z. Wu, Magnetic stripe domains of [Pt/Co/Cu]10 multilayer near spin reorientation transition. AIP Adv. 6, 056109 (2016)

    Google Scholar 

  44. J. Jiao, T. Wang, T. Ma, Y. Wang, F. Li, Achievement of diverse domain structures in soft magnetic thin film through adjusting intrinsic magnetocrystalline anisotropy. Nanoscale Res. Lett. 12, 21 (2017)

    Google Scholar 

  45. A. Masood, P. McCloskey, C. Mathúna, S. Kulkarni, Controlling the competing magnetic anisotropy energies in FineMET amorphous thin films with ultra-soft magnetic properties. AIP Adv. 7, 055208 (2017)

    Google Scholar 

  46. L. Raghavan, S. Ojha, I. Sulania, N.C. Mishra, K.M. Ranjith, M. Baenitz, D. Kanjilal, Thermal annealing induced competition of oxidation and grain growth in nickel thin films. Thin Solid Films 680, 40–47 (2019)

    CAS  Google Scholar 

  47. R. Pereira, P.C. Camargo, A.J.A. de Oliveira, E.C. Pereira, Modulation of the morphology, microstructural and magnetic properties on electrodeposited NiFeCu alloys. Surf. Coat. Technol. 311, 274–281 (2017)

    CAS  Google Scholar 

  48. Y.-T. Chen, J.-Y. Tseng, T.-S. Sheu, Y.C. Lin, S.H. Lin, Effect of grain size on magnetic properties and microstructure of Ni80Fe20 thin films. Thin Solid Films 544, 602–605 (2013)

    CAS  Google Scholar 

  49. X. Sun, Z. Li, F. Xu, Y. Wang, Spin and orbital moments of electrodeposited Fe28Co51Ni21 soft magnetic films determined by X-ray magnetic circular dichroism. J. Alloys Compd. 656, 812–817 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Malik Kaya from Eskişehir Osmangazi University for his valuable time and efforts on electrochemical growth process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Saraç.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denizli, Ç., Saraç, U. & Baykul, M.C. Controlling the surface morphologies, structural and magnetic properties of electrochemically fabricated Ni–Co thin film samples via seed layer deposition. J Mater Sci: Mater Electron 31, 4279–4286 (2020). https://doi.org/10.1007/s10854-020-02981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02981-z

Navigation