Skip to main content
Log in

Composite synthesis from carbon nanotubes and styrene oligomers, the functionalization and magnetic field effect in their properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nanostructure materials are a prefer option to the high-growth technological changes. The remarkable nanotubes and other carbon nanostructure properties have been theoretically and experimentally tested. These nanostructures can be used as reinforcement materials in composites; the research main challenge is the dispersion of these carbon materials in different matrices caused by cluster formations produced by the intermolecular forces. The aim of this research was the synthesis and characterization of a composite material from carbon nanotubes and styrene oligomers with hydroxyl end groups; and the analysis of their dispersion and mechanical and electrical properties. Pristine and functionalized carbon nanotubes and polystyrene with hydroxyl end groups were synthesized; furthermore, magnetic field was applied to the composites to promote dispersion of carbon nanotubes. The materials were characterized by scanning electron microscopy, FTIR and Raman spectroscopy. The Raman spectroscopy has demonstrated interaction between carbon nanostructures and polymers; this changes their mechanical and electrical properties. The composites formed with functionalized carbon nanotubes (1.6 wt%) have the highest hardness value (91.16 HV), five times over the pristine polymer. As carbon nanostructure concentration increases, the composite acquires conductivity and the electron transport is promoted. The values obtained in the composites qualify them as electromagnetic interference shields, those demand materials with higher electrical conductivity than conventional polystyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Grobert, J.P. Hare, H.W. Hsu, H.W. Kroto, A.J. Pidduck, H. Terrones, M. Terrones, S. Trasobares, C. Vizard, C.L. Reeves, D.J. Wallis, D.R.M. Walton, P.J. Wright, Y.Q. Zhu, AIP Conf. Proc. (1998). https://doi.org/10.1063/1.56529

    Article  Google Scholar 

  2. A. Aqel, K.M.M.A. El-Nour, R.A. Ammar, A. Al-Warthan, Arab. J. Chem. (2012). https://doi.org/10.1016/j.arabjc.2010

    Article  Google Scholar 

  3. E.H. Falcao, F. Wudl, J. Chem. Technol. Biotechnol. (2007). https://doi.org/10.1002/jctb.1693

    Article  Google Scholar 

  4. M. Kaempgen, G.S. Duesberg, S. Roth, Appl. Surf. Sci. (2005). https://doi.org/10.1016/j.apsusc.2005.01.020

    Article  Google Scholar 

  5. F. Mirri, A.W. Ma, T.T. Hsu, N. Behabtu, S.L. Eichmann, C.C. Young, D.E. Tsentalovich, M. Pasquali, ACS Nano (2012). https://doi.org/10.1021/nn303201g

    Article  Google Scholar 

  6. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, S.H. Chan, Prog. Polym. Sci. (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.002

    Article  Google Scholar 

  7. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. A (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  8. A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Chem. Mater. (2003). https://doi.org/10.1021/cm020975d

    Article  Google Scholar 

  9. J.J Contreras-Navarrete, F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, M.R. Cisneros-Magaña, L. García-González, M.L. Mondragón-Sánchez, Superficies y Vacío (2015). https://www.scielo.org.mx/scielo.php?pid=S1665-35212015000400111&script=sci_arttext

  10. J.M. Ambriz-Torres, F.G. Granados-Martínez, J.J. Contreras-Navarrete, C.J. Gutiérrez-García, D.L. García-Ruiz, M.L. Mondragón-Sánchez, O. Hernández-Cristóbal, Y. Arredondo-León, L. García-González, L. Zamora-Peredo, Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aad260

    Article  Google Scholar 

  11. G.A. Domrachev, A.I. Lazarev, B.S. Kaverin, A.N. Egorochkin, A.M. Ob, E.G. Domracheva, L.G. Domracheva, G.V. Markin, E. Huipe Nava, A.A. Sorokin, O.N. Suvorova, A.I. Kirillov, A.A. Zakurazhnov, Phys. Solid State (2004). https://doi.org/10.1134/1.180944

    Article  Google Scholar 

  12. L.G. Domracheva-L’vova, G.A. Domrachev, E.G. Domracheva, E. Huipe Nava, Phys. Chem. (2008). https://doi.org/10.1134/S0012501608090030

    Article  Google Scholar 

  13. M.H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti, B. Büchner, Nano Res. (2011). https://doi.org/10.1186/1556-276X-6-303

    Article  Google Scholar 

  14. M.H. Rummeli, F. Schäffel, A. Bachmatiuk, D. Adebimpe, G. Trotter, F. Borrnert, A. Scott, E. Coric, M. Sparing, B. Rellinghaus, P.G. McCormick, G. Cuniberti, M. Knupfer, L. Schultz, G. McCormick, ACS Nano (2010). https://doi.org/10.1021/nn9016108

    Article  Google Scholar 

  15. M.H. Rümmeli, F. Schäffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R.J. Kalenczuk, B. Rellinghaus, B. Büchner, T. Pichler, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja0779405

    Article  Google Scholar 

  16. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. (2010). https://doi.org/10.1166/jnn.2010.2939

    Article  Google Scholar 

  17. I. Boyer, A. Karam, C. Albano, W. García, C.U. de Navarro, G. González, Caracterización de nanotubos de carbono recubiertos con nanohidroxiapatita. Acta Microsc. 19(2), 196–201 (2010)

    CAS  Google Scholar 

  18. L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.04.032

    Article  Google Scholar 

  19. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy, 4th edn. (Cengage Learning, Stamford, 2008), pp. 15–104

    Google Scholar 

  20. A. Misra, P.K. Tyagi, M.K Singh, D.S. Misra, Diam. Relat. Mater. (2006). https://doi.org/10.1016/j.diamond.2005.08.013

    Article  Google Scholar 

  21. S. Reich, C. Thomsen, Philos. Trans. R. Soc. (2004). https://doi.org/10.1098/rsta.2004.1444

    Article  Google Scholar 

  22. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes, Chem. Phys. Lett. (2003). https://doi.org/10.1016/S0009-2614(03)00701-2

    Article  Google Scholar 

  23. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens. Matter. Phys. (2010). https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  Google Scholar 

  24. A. Kolanowska, A. Kuziel, Y. Li, S. Jurczyk, S. Boncel, RSC Adv. 7, 51374 (2017)

    Article  CAS  Google Scholar 

  25. G.G. Wildgoose, C.E. Banks, R.G. Compton, Small (2006). https://doi.org/10.1002/smll.200500324

    Article  Google Scholar 

  26. H.M. Cheng, Q.H. Yang, C. Liu, Carbon (2001). https://doi.org/10.1016/S0008-6223(00)00306-7

    Article  Google Scholar 

  27. T. Belin, F. Epron, Mater. Sci. Eng. B (2005). https://doi.org/10.1016/j.mseb.2005.02.046

    Article  Google Scholar 

  28. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. (1990). https://doi.org/10.1021/cm00011a018

    Article  Google Scholar 

  29. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, Carbon (2007). https://doi.org/10.1016/j.carbon.2007.01.003

    Article  Google Scholar 

  30. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, M.A. Pimenta, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2196057

    Article  Google Scholar 

  31. F. Tuinstra, J.L. Koenig, J. Chem. Phys. (1970). https://doi.org/10.1063/1.1674108

    Article  Google Scholar 

  32. B. Kousaalya, R. Kumar, S. Packirisamy, J. Adv. Ceram. (2013). https://doi.org/10.1007/s40145-013-0079-4

    Article  Google Scholar 

  33. M.S. Jaleh, M.F. Madad, S. Tabrizi, R. Habibi, M.R. Golbedaghi, J. Keymanesh, Iran Chem. Soc. (2011). https://doi.org/10.1007/BF03254293

    Article  Google Scholar 

  34. K. Kaniappan, S. Latha, Certain investigations on the formulation and characterization of polystyrene/poly (methyl methacrylate) blends, Int. J. ChemTech Res. (2011). https://pdfs.semanticscholar.org/c28f/a340040676ba970f0a9a3013aaa00d946118.pdf

  35. A.Y. León-Bermúdez, R.J.C. Salazar, Synthesis and characterization of the polystyrene-asphaltene graft copolymer by FT-IR spectroscopy. Ciencia Tecnología y Futuro 3, 157–167 (2008)

    Google Scholar 

  36. O. Gutiérrez-Arriaga, S. Vasquez, N. Flores-Ramírez, G. Luna-Barcenas, G. Barrera Cardiel, C. León-Patino, A film of polystyrene hydroxyl end group supported on SiO2 monoliths: thermal conductivity and micro-indentation. Global Journal of Science Frontier Research Chemistry 12, 1–9 (2012)

    Google Scholar 

  37. F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, L. García-González, L. Zamora-Peredo, M.D.L. Mondragón-Sánchez, Mater. Res. (2016). https://doi.org/10.1557/adv.2018.627.org/10.1590/1980-5373-mr-2016-0783

    Article  Google Scholar 

  38. F.G. Granados-Martínez, D.L. García-Ruiz, J.J. Contreras-Navarrete, J.M. Ambriz-Torres, C.J. Gutiérrez-García, L. García-González, L. Zamora-Peredo, L. Domratcheva-Lvova, MRS Adv. (2017). https://doi.org/10.1557/adv.2018.627

    Article  Google Scholar 

  39. J.M. Granadino-Roldán, M. Fernández-Gómez, A. Navarro, Chem. Phys. Lett. (2003). https://doi.org/10.1016/S0009-2614(03)00416-0

    Article  Google Scholar 

  40. P.P. Hong, F.J. Boerio, S.J. Clarson, S.D. Smith, Macromolecules (1991). https://doi.org/10.1021/ma00017a007

    Article  Google Scholar 

  41. A. Palm, J. Phys. Chem. (1951). https://doi.org/10.1021/j150491a005

    Article  Google Scholar 

  42. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  Google Scholar 

  43. W. Cai, D. Xu, L. Qian, J. Wei, C. Xiao, L. Qian, Z.Y. Lu, S. Cui, J. Am. Chem. Soc. (2019). https://doi.org/10.1021/jacs.9b03490

    Article  Google Scholar 

  44. Q. Zhao, H.D. Wagner, Philos. Trans. R. Soc. Lond. A (2004). https://doi.org/10.1098/rsta.2004.1447

    Article  Google Scholar 

  45. T. Fujigaya, N. Nakashima, Sci. Technol. Adv. Mater. (2015). https://doi.org/10.1088/1468-6996/16/2/024802

    Article  Google Scholar 

  46. Z. Yang, B. Dong, Y. Huang, L. Liu, F.Y. Yan, H.L. Li, Mater. Chem. Phys. (2005). https://doi.org/10.1016/j.matchemphys.2005.04.029

    Article  Google Scholar 

  47. P. Jindal, M. Goyal, N. Kumar, Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.08.100

    Article  Google Scholar 

  48. V.K. Sachdev, S. Bhattacharya, K. Patel, S.K. Sharma, N.C. Mehra, R.P. Tandon, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40201

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Universidad Michoacana de San Nicolás de Hidalgo/Morelia, Centro de Investigación en Micro y Nanotecnología/Universidad Veracruzana, Universidad Nacional Autónoma de México/Unidad Morelia, UAM Iztapalapa and CONACYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Domratcheva-Lvova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados-Martínez, F.G., Garcia-Ruiz, D.L., Contreras-Navarrete, J.J. et al. Composite synthesis from carbon nanotubes and styrene oligomers, the functionalization and magnetic field effect in their properties. J Mater Sci: Mater Electron 31, 7461–7469 (2020). https://doi.org/10.1007/s10854-020-02968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02968-w

Navigation