Skip to main content
Log in

Longitudinal optical Raman mode A1 to calculate the indium molar fraction of epitaxial InGaN layers grown by LP-MOCVD on polar and non-polar planes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work discusses the frequency shift of Raman mode A1(LO) for InGaN epitaxial layers grown on polar (0002) and non-polar (11–20) planes concerning strain state, indium composition, and the probe excitation energy. Furthermore, it proposes MOCVD growth conditions to grow fully relaxed polar and non-polar InGaN layers, without indium droplets formation. Then, using the probe excitation energies of 2.33 eV and 2.68 eV, Raman measurements exhibited phonon mode A1(LO) frequency shift in polar and non-polar InGaN. Besides, theoretical calculations showed that for x < 0.20, and changing the excitation energy from 2.33 to 2.68 eV, the expected frequency shift is less or equal to 15 cm−1. Also, the XRD spectra exhibited two different indium compositions for non-polar a-plane InGaN and one composition for polar c-plane InGaN. According to XRD, for non-polar a-plane InGaN, the frequency shift measured corresponds to an indium composition gradient along the growth direction and the probe excitation energy change. On the other hand, for polar c-plane InGaN, the frequency shift measured is attributed to the probe excitation energy change. Also, AFM showed that there is an excellent island coalescence in GaN and InGaN epitaxial growth. The average surface roughness for polar InGaN was 75.678 nm and was 61.216 nm for non-polar InGaN. Moreover, these values are ten times smaller than their peak-to-peak distance, and the growth follows the Stranski–Krastanov model. FWHM for all samples corresponds to a total dislocations density of  ~ 109/cm2 near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.R. Routray, T.R. Lenka, CSIT 6(1), 83–96 (2018)

    Article  Google Scholar 

  2. S. Almosni et al., Sci. Technol. Adv. Mater. 19(1), 336–369 (2018)

    Article  CAS  Google Scholar 

  3. S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000)

    Article  CAS  Google Scholar 

  4. G.B. Stringfellow, J. Crystal Growth 468, 11–16 (2017)

    Article  CAS  Google Scholar 

  5. F.K. Yam, Z. Hassan, Superlattices and Microstruct. 43, 1–23 (2008)

    Article  CAS  Google Scholar 

  6. R. Luo, P. Xiang et al., Jpn. J. Appl. Phys. 50, 105501 (2011)

    Google Scholar 

  7. J. Wei Ho, L. Zhang, Q. Wee, et. al., J. Crystal Growth 383: 1- 8 (2013).

    Article  Google Scholar 

  8. M. Wei, X. Wang et al., Mater. Sci. Semicond. Process. 14, 97–100 (2011)

    Article  CAS  Google Scholar 

  9. B. Ting Liu, P. Ma, X.-L. Li, J.-X. Wang and J.-M. Li, Chin. Phys. Lett. 34:5 (2017)

    Google Scholar 

  10. E. Arslan, M.K. Ozturk et al., J. Phys. D 41, 155317 (2008)

    Article  Google Scholar 

  11. K. Matsumoto, T. Ono, Y. Honda, S. Murakami, M. Kushimoto, H. Amano, Jpn. J. Appl. Phys. 57, 091001 (2018)

    Article  Google Scholar 

  12. H. Çakmak, E. Arslan, M. Rudzinski, P. Demirel, H.E. Unalan, W. Strupinski, R. Turan, M. Örtürk, E. Özbay, J. Mater. Sci. Mater. Electron. 25, 3652–3658 (2014)

    Article  Google Scholar 

  13. M. Meyer, J. Stellmach, C. Meissner, M. Pristovsek, M. Kneissi, J. Crystal Growth 310, 4913–4915 (2008)

    Article  Google Scholar 

  14. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Doneell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson, C.J. Deatcher, Appl. Phys. Lett. 80, 3913 (2002)

    Article  CAS  Google Scholar 

  15. A.G. Bhuiyan, A. Mihara, T. Esaki, K. Sugita, A. Hashimoto, A. Yamamoto, N. Watanabe, H. Yokoyama, N. Shigekawa, Phys. Status Solidi C 9(3–4), 670–672 (2012)

    Article  CAS  Google Scholar 

  16. A. Kursat Bilgili, Ö. Akpinar, G. Kurtulus, M. Kemal Ozturk, S. Ozcelik and E. Ozbay, J. Mater. Sci. 29: 12373–13380 (2018)

    Google Scholar 

  17. J.G. Kim, Y. Kamei, A. Kimura, N. Hasuike, H. Harima, K. Kisoda, T. Hotta, K. Sasamoto, A. Yamamoto, Phys. Status Solidi C 9(3–4), 730–732 (2012)

    Article  CAS  Google Scholar 

  18. M. Azadmand, E. Bonera, D. Chrastina, S. Bietti, S. Tsukamoto, R. Nötzel and S. Sanguinetti, Jpn. J. Appl. Phys. 58: SC1020 (2019).

    Article  CAS  Google Scholar 

  19. Y. Guo, X.L. Liu et al., Appl. Surface Sci. 256, 3352–3356 (2010)

    Article  CAS  Google Scholar 

  20. D. Alexson, L. Bergman, R.J. Nemanich, M. Dutta, M.A. Stroscio, C.A. Parker, S.M. Bedair, N.A. El-Masry, F. Adar, J. Appl. Phys. 89, 798 (2001)

    Article  CAS  Google Scholar 

  21. M. Kumar, M. Becker, T. Wernicke, R. Singh, Appl. Phys. Lett. 105, 142106 (2014)

    Article  Google Scholar 

  22. M.R. Correia, S. Pereira, E. Pereira, J. Frandon, E. Alves, Appl. Phy. Lett. 83, 4761 (2003)

    Article  CAS  Google Scholar 

  23. S. Hernández, R. Cuscó, D. Pastor, L. Artús, K.P. O’Donnell, R.W. Martin, I.M. Watson, Y. Nanishi, E. Calleja, J. App. Phys. 98, 013511 (2005)

    Article  Google Scholar 

  24. C. Roder, S. Einfeldt et al., J. App. Phys. 100, 103511 (2006)

    Article  Google Scholar 

  25. M. Azadmand et. al., Jpn. J. Appl. Phys. 58: SC1020 (2019).

    Article  CAS  Google Scholar 

  26. S. Lazic, M. Moreno, J.M. Calleja, A. Trampert, K.H. Ploog, F.B. Naranjo, S. Fernandez, E. Calleja, Appl. Phys. Lett. 86, 061905 (2005)

    Article  Google Scholar 

  27. J. S. Arias-Cerón, H. Vilchis, D.M. Hurtado-Castañeda, V.M. Sánchez-R, Mater. Sci. Semicond. Process. 74: 98–101 (2018).

    Article  Google Scholar 

  28. H. Vilchis, V.M. Sánchez-R, Mater. Sci. Semicond. Process. 37: 68–72 (2015)

    Article  CAS  Google Scholar 

  29. H. Vilchis, V.M. Sánchez-R., A. Escobosa, Thin Solid Films 520 (16) 5191–5194 (2012)

    Article  CAS  Google Scholar 

  30. H. Vilchis, V.M. Sánchez-R., A. Escobosa, J. Phys. 167: 012–049 (2009)

    Google Scholar 

  31. H. Vilchis. Víctor M. Sánchez-R., A. Escobosa, 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008).

Download references

Acknowledgements

Thanks to Consejo Nacional de Ciencia y Tecnología de México (CONACyT) for its financial support (PNPC) to Ph. D. program at Solid State Electronics Section, Electrical Engineering Department, CINVESTAV. Also, the authors would like to thank D. Ramírez for his technical assistance in the MOCVD system, A. Tavira for the XRD measurements, and M. Galvan and M. Avendaño for their technical support in Raman and AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Arias Cerón.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín-García, C.A., Cerón, J.S.A. & Sánchez-R, V.M. Longitudinal optical Raman mode A1 to calculate the indium molar fraction of epitaxial InGaN layers grown by LP-MOCVD on polar and non-polar planes. J Mater Sci: Mater Electron 31, 7455–7460 (2020). https://doi.org/10.1007/s10854-020-02966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02966-y

Navigation