Skip to main content
Log in

Synthesis and characterization of chemically sprayed ZnO:Fe:Ni thin films: effect of codoping concentration and response as gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Codoped Fe–Ni zinc oxide (ZnO:Fe:Ni) thin films have been deposited successfully on bare soda-lime glass substrates by the ultrasonic chemical spray technique. Zinc acetylacetonate hydrate was selected as Zn source and nickel acetylacetonate and iron chloride as doping sources. Structural, morphological, and optical characterizations were done for ZnO:Fe:Ni films. The location of the X-ray diffraction peaks of the undoped ZnO films corresponds to wurtzite hexagonal type with the (002) plane normally perpendicular to the substrate surface; however, for codoped ZnO films, the corresponding diffraction peaks fit well to the wurtzite hexagonal type. Moreover, a peak with preferential orientation in the 2θ position of 38° and another low intensity peak located at 61° corresponding to bcc cubic structure of Fe3O4 were observed. Dramatic changes in the surface morphology in accordance with the doping level were observed for codoped ZnO films. The gas sensing response of undoped and codoped ZnO films was tested with propane and carbon monoxide gases and found to be moderate at low concentrations and significant for higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  2. S. Chaudhary, A. Umar, Nanosci. Nanotechnol. Lett. 9, 1787 (2017)

    Article  Google Scholar 

  3. S.U. Jen, H. Sun, H.P. Chiang, Materials 9, 987 (2016)

    Article  Google Scholar 

  4. S. Sugumaran, C.S. Bellan, D. Bheeman, Opt. Mater. 72, 618 (2017)

    Article  CAS  Google Scholar 

  5. V. Craciun, R.K. Singh, J. Perriere, J. Spear, D. Craciund, J. Electrochem. Soc. 147, 1077 (2000)

    Article  CAS  Google Scholar 

  6. S. Kim, C. Kim, J.N. Jihoon, J. Sol Gel Sci. Technol. 74, 790 (2018)

    Article  Google Scholar 

  7. S. Jongthammanurak, T. Cheawkul, M. Witana, Thin Solid Films 571, 114 (2014)

    Article  CAS  Google Scholar 

  8. D. Perednis, L.J. Gauckler, J. Electroceram. 14, 103 (2005)

    Article  CAS  Google Scholar 

  9. C. Guild, S. Biswas, Y. Meng, T. Jafari, A.M. Gaffney, S.L. Suib, Catal. Today 238, 87 (2017)

    Article  Google Scholar 

  10. S.V. Roth, J Phys Condens. Mater. 28, 1 (2016)

    Google Scholar 

  11. M. Boshta, E. Chikoidze, M.H. Sayed, C. Vilar, B.Y. Berini, J. Mater. Sci. 49, 7943 (2014)

    Article  CAS  Google Scholar 

  12. A. Srivastava, N. Kumar, S. Khare, Opto-Electron Rev. 22, 68 (2014)

    Article  CAS  Google Scholar 

  13. W. Bousslama, H. Elhouichet, M. Férid, Optik 134, 88 (2017)

    Article  CAS  Google Scholar 

  14. N.V. Kaneva, D.T. Dimitrov, C.D. Dushkin, Appl. Surf. Sci. 257, 8113 (2011)

    Article  CAS  Google Scholar 

  15. G.K. Mani, J.B.B. Rayappan, Appl. Surf. Sci. 311, 405 (2014)

    Article  CAS  Google Scholar 

  16. V.V. Ganbavle, S.I. Inamdar, G.L. Agawane, J.H. Kim, K.Y. Rajpure, Chem. Eng. J. 286, 36 (2016)

    Article  CAS  Google Scholar 

  17. A.M. Al-Hamdia, U. Rinner, M. Sillanpää, Process Saf. Environ. 107, 190 (2017)

    Article  Google Scholar 

  18. P. Samarasekara, N.U.S. Yapa, N.T.R.N. Kumara, M.V.K. Perera, Bull. Mater. Sci. 30, 113 (2007)

    Article  CAS  Google Scholar 

  19. C.Y. Lu, S.P. Chang, S.J. Chang, T.J. Hsueh, C.L. Hsu, Y.Z. Chiou, I.C. Chen, IEEE Sens. J. 9, 485 (2009)

    Article  Google Scholar 

  20. R. Kumar, O.A. Dossary, G. Kumar, A. Umar, Nano-micro Lett. 7, 97 (2015)

    Article  Google Scholar 

  21. B. Yuliarto, M.F. Ramadhani, N. Tapran, N.L.W. Septiani, K. Hamam, J. Mater. Sci. 52, 4543 (2017)

    Article  CAS  Google Scholar 

  22. M. Hjiri, R. Dhahri, R. Dhahri, K. Omri, E.M.M. Lassaad, S.G. Leonardi, N. Donato, G. Neri, Mater. Sci. Semicond. Proc. 27, 319 (2014)

    Article  CAS  Google Scholar 

  23. V.K. Jayaraman, A. Maldonado, M. Olvera, Mater. Lett. 157, 169 (2015)

    Article  CAS  Google Scholar 

  24. H. Gómez-Pozos, E.J. Luna-Arredondo, A. Maldonado, R. Biswal, Y. Kudriavtsev, J. Vega-Pérez, Y.L. Casallas-Moreno, M. Olvera, Materials (2016). https://doi.org/10.3390/ma9020087

    Article  Google Scholar 

  25. R.L. Fomekong, D. Lahem, M. Debliquyd, S. Yunus, J.L. Ngolui, A. Delcorte, Sens. Actuator B 231, 520 (2016)

    Article  Google Scholar 

  26. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sens. Actuators B 123, 701 (2007)

    Article  CAS  Google Scholar 

  27. N.L. Tarwal, A.V. Rajgure, J.Y. Patil, M.S. Khandekar, S.S. Suryavanshi, P.S. Patil, M.G. Gang, J.H. Kim, J.H. Jang, J. Mater. Sci. 48, 7274 (2013)

    Article  CAS  Google Scholar 

  28. G.K. Mani, J.B.B. Rayappan, Mater. lett. 158, 373 (2015)

    Article  CAS  Google Scholar 

  29. J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)

    Article  Google Scholar 

  30. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  CAS  Google Scholar 

  31. W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Sci. Technol. Adv. Mater. 16, 1 (2015)

    Article  Google Scholar 

  32. M.P. Dasari, U. Godavarti, V.D. Mote, Process Appl. Ceram. 12, 100 (2018)

    Article  CAS  Google Scholar 

  33. B.D. Cullity, Elements of X-ray Diffraction, 1st edn. (Addison Wesley, Reading, 1956), pp. 96–102

    Google Scholar 

  34. C.S. Barret, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data (Pergamon Press, Oxford, 1980), p. 204

    Google Scholar 

  35. Z.R. Khan, M. Zulfequar, M.S. Khan, Mater. Lett. 174, 145 (2010)

    CAS  Google Scholar 

  36. A.P. Roth, W.J. Keeler, E. Fortin, Can. J. Phys. 58, 560 (1980)

    Article  CAS  Google Scholar 

  37. E. Burstein, Anomalous optical absorption limit in InSb. Phys Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  38. M. Grundmann, The Physics of Semiconductors (Springer, Berlin, 2006)

    Google Scholar 

  39. A. Smith, R. Rodriguez-Clemente, Thin Solid Films 345, 192 (1999)

    Article  CAS  Google Scholar 

  40. R. Jaaniso, O.K. Tan, Semiconductor Gas Sensors (Chap. 2) (Woodhead Publishing, Cambridge, 2013)

    Book  Google Scholar 

  41. A. Gregory, Baxes, Digital Image Processing, Principles and Applications (Wiley, New York, 1994)

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Moises Orduño-Gómez, E. J. Luna-Arredondo, M. A. Luna-Arias, A. Tavira-Fuentes, and J.E. Romero-Ibarra for their technical assistance. This work was partially supported by Programa de Mejoramiento del Profesorado from the Secretaria de Educación Pública, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gomez-Pozos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaraman, V.K., Biswal, R.R., Hernandez, A.G. et al. Synthesis and characterization of chemically sprayed ZnO:Fe:Ni thin films: effect of codoping concentration and response as gas sensor. J Mater Sci: Mater Electron 31, 7423–7433 (2020). https://doi.org/10.1007/s10854-020-02938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02938-2

Navigation