Skip to main content
Log in

Enhancing electron transport in perovskite solar cells by incorporating GO to the meso-structured TiO2 layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the graphene oxide (GO)-TiO2 nanocomposite film prepared by the sol–gel method was used to optimize the photoelectric performance of the perovskite solar cells (PSCs), which structure is based on the carbon electrode and no hole transport layer. Through a series of scientific experiments, it has been proved that the GO–TiO2 nanocomposite film has excellent electrical properties. The electron transport layer which containing 1 wt% of GO makes the PSCs have the most excellent performance. Compared with the controlling PSCs, the photoelectric conversion efficiency of PSCs, which containing 1 wt% GO, increased by 9.3%, from 12.44 to 13.60%. Short-circuit current density (Jsc) increased by 5.99%, from 21.55 to 22.84 mA/cm2, and open circuit voltage remained basically unchanged. It can be seen from the measurement results that the trend of incident photon-to-electron conversion efficiency spectrum is consistent with JV characteristics, indicating that the PSCs device containing 1 wt% GO has the best electron extraction and transfer performance. However, when too much GO is used, the increased surface charge trap state will lead to the acceleration of carrier recombination and the decrease of electron transport path, and the photovoltaic parameters show a downward trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.K. Kumawat et al., Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations. Phys. Chem. A. 120(22), 3917–3923 (2016). https://doi.org/10.1021/acs.jpca.6b04138

    Article  CAS  Google Scholar 

  2. P. Gao, M. Gratzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014)

    Article  CAS  Google Scholar 

  3. S.D. Stranks et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  4. A. Kojima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  5. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162

    Article  CAS  Google Scholar 

  6. W. Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). https://doi.org/10.1126/science.aaa0472

    Article  CAS  Google Scholar 

  7. A. Yella, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011). https://doi.org/10.1126/science.1209688

    Article  CAS  Google Scholar 

  8. J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  9. K. Chen et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018)

    Article  CAS  Google Scholar 

  10. Y.G. Tu et al., Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells. Adv. Mater. 30(49), 1805085 (2018)

    Article  Google Scholar 

  11. D.Y. Luo et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282

    Article  CAS  Google Scholar 

  12. T.H. Liu et al., Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv. Energy Mater. 8(22), 1800232 (2018). https://doi.org/10.1002/aenm.201800232

    Article  CAS  Google Scholar 

  13. X.Y. Zhu et al., Improved photovoltaic properties of nominal composition CH3NH3Pb0.99Zn0.01I3 carbon-based perovskite solar cells. Opt. Express 26(26), A984 (2018). https://doi.org/10.1364/OE.26.00A984

    Article  CAS  Google Scholar 

  14. P. Tonui et al., Perovskites photovoltaic solar cells: an overview of current status. Renew. Sust. Energy Rev. 91, 1025–1044 (2018). https://doi.org/10.1016/j.rser.2018.04.069

    Article  CAS  Google Scholar 

  15. L. Qiu, L.K. Ono, Y. Qi, Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology. Mater Today Eenrgy 7, 169–189 (2018). https://doi.org/10.1016/j.mtener.2017.09.008

    Article  Google Scholar 

  16. L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396 (2012). https://doi.org/10.1021/ja307789s

    Article  CAS  Google Scholar 

  17. Z. Zhu et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014). https://doi.org/10.1021/ja4132246

    Article  CAS  Google Scholar 

  18. G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009). https://doi.org/10.1021/jp811377n

    Article  CAS  Google Scholar 

  19. K. Kumar et al., Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles for humidity detection. J. Mater. Sci.: Mater. Electron. 30(14), 13013–13023 (2019). https://doi.org/10.1007/s10854-019-01663-9

    Article  CAS  Google Scholar 

  20. U. Kumar et al., Carbon nanotube: synthesis and application in solar cell. J. Inorg. Organomet. Polym. 26(6), 1231–1242 (2016). https://doi.org/10.1007/s10904-016-0401-z

    Article  CAS  Google Scholar 

  21. C.N.R. Rao et al., Some novel attributes of graphene. J. Phys. Chem. Lett. 1(2), 572–580 (2010). https://doi.org/10.1021/jz9004174

    Article  CAS  Google Scholar 

  22. G. Williams, P.V. Kamat, Graphene-semiconductor nanocomposites. Excited state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009). https://doi.org/10.1021/la900905h

    Article  CAS  Google Scholar 

  23. X. Yin et al., Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. J. Mater. Chem. A. 6(42), 20702–20711 (2018). https://doi.org/10.1039/C8TA05955A

    Article  CAS  Google Scholar 

  24. K. Domanski et al., Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3(1), 61–62 (2018). https://doi.org/10.1038/s41560-017-0060-5

    Article  CAS  Google Scholar 

  25. N. Zibouche, G. Volonakis, F. Giustino, Graphene oxide/perovskite interfaces for photovoltaics. J. Phys. Chem. C 122(29), 16715–16726 (2018). https://doi.org/10.1021/acs.jpcc.8b03230

    Article  CAS  Google Scholar 

  26. S. Das et al., The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 31(1), 1802722 (2019). https://doi.org/10.1002/adma.201802722

    Article  CAS  Google Scholar 

  27. S. Feng et al., High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Appl. Mater. Interfaces. 8(23), 14503–14512 (2016). https://doi.org/10.1021/acsami.6b02064

    Article  CAS  Google Scholar 

  28. D. Xiong et al., Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. J. Mater. Chem. A. 3(21), 11376–11386 (2015). https://doi.org/10.1039/C5TA01574J

    Article  CAS  Google Scholar 

  29. A. Fakharuddin et al., Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 283, 61–67 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.084

    Article  CAS  Google Scholar 

  30. X. Xu et al., Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J. Mater. Chem. A. 3(38), 19288–19293 (2015). https://doi.org/10.1039/C5TA04239A

    Article  CAS  Google Scholar 

  31. M.A. Mahmud et al., Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Mater. Solar Cells 159, 251–264 (2017). https://doi.org/10.1016/j.solmat.2016.09.014

    Article  CAS  Google Scholar 

  32. Z.G. Xu, H.Y. Gao, G.X. Hu, Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film. Carbon 49(14), 4731–4738 (2011). https://doi.org/10.1016/j.carbon.2011.06.078

    Article  CAS  Google Scholar 

  33. K. Jasuja, V. Berry, Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and raman enhancement. ACS Nano 3(8), 2358–2366 (2009). https://doi.org/10.1021/nn900504v

    Article  CAS  Google Scholar 

  34. N.J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014)

    Article  CAS  Google Scholar 

  35. N. Ahn et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930

    Article  CAS  Google Scholar 

  36. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  37. Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). https://doi.org/10.1021/ja411509g

    Article  CAS  Google Scholar 

  38. A.T. Barrows et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014). https://doi.org/10.1039/C4EE01546K

    Article  CAS  Google Scholar 

  39. B. Xin et al., Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. B 109(7), 2805–2809 (2005). https://doi.org/10.1021/jp0469618

    Article  CAS  Google Scholar 

  40. M.K. Gangishetty et al., Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core–shell Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces. 5(21), 11044–11051 (2013). https://doi.org/10.1021/am403280r

    Article  CAS  Google Scholar 

  41. W.S. Yang et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  42. M.M. Tavakoli et al., High efficiency and stable perovskite solar cell using ZnO/RGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3(11), 1500790 (2016). https://doi.org/10.1002/admi.201500790

    Article  CAS  Google Scholar 

  43. M. Ye et al., Metal/graphene oxide batteries. Carbon 125, 299–307 (2017). https://doi.org/10.1016/j.carbon.2017.09.070

    Article  CAS  Google Scholar 

  44. H. Chen, C. Li, L. Qu, Solution electrochemical approach to functionalized graphene: history, progress and challenges. Carbon 140, 41–56 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (NSFC) (11974266,11704293), the Fundamental Research Funds for the Central Universities under Grant WUT (2018IB017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Yang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, N., Ran, M. et al. Enhancing electron transport in perovskite solar cells by incorporating GO to the meso-structured TiO2 layer. J Mater Sci: Mater Electron 31, 3603–3612 (2020). https://doi.org/10.1007/s10854-020-02913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02913-x

Navigation