Skip to main content
Log in

Highly bright and sensitive thermometric LiYF4:Yb, Er upconversion nanocrystals through Mg2+ tridoping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new strategy is reported to enhance the upconversion (UC) luminescence emission of LiYF4:Yb, Er nanocrystals (NCs) using magnesium as a dopant. We carried out systematic experimental studies on the crystal structure, grain size, and UC emitting property of the tetragonal LiYF4:Yb, Er with varied concentrations of Mg2+. The UC luminescence properties were examined under 980 nm laser illumination with various excitation power densities. At a proper doping concentration, co-doping of Mg2+ ions into LiYF4:Yb, Er is found to result in efficient reinforcement in both the green and red upconverted emissions. Remarkably, the maximum green and red luminescence intensities were reinforced by sevenfold and fivefold, respectively, when 7 mol% Mg2+ was co-doped into tetragonal LiYF4. The possible origin and mechanism for boosting UC emission were explained according to the alteration of the cell volume and the local crystal field surrounding the Er3+ ions by co-doping of Mg2+. Moreover, the emission-optimized LiYF4 UCNCs were further investigated to understand thermal-sensing behaviors employing the fluorescence intensity ratio (FIR) approach from the two neighboring thermal coupled states (2H11/2/4S3/2). The optimization of Mg2+ co-doping in LiYF4:Yb, Er allowed the resultant UCNCs to be an excellent luminescent thermometer over a wide range of temperature. Applying the optimized UCNCs as an optical thermometer, a maximum thermal sensitivity (S) of 5.43 × 10–2 K−1 was achieved at room temperature and a low-power excited upconversion (1 W cm−2). The achieved S value is more advanced than most of the Er-based nanophosphors reported heretofore. This paper provides a perspective scheme to design and grow high-quality upconversion nanomaterials for achieving the preconditions of the pragmatic application in temperature sensing, optically heating, and color display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fernandez-Bravo, K. Yao, E.S. Barnard, N.J. Borys, E.S. Levy, B. Tian, C.A. Tajon, L. Moretti, M.V. Altoe, S. Aloni, Nat. Nanotechnol. 13, 572 (2018)

    CAS  Google Scholar 

  2. M.S. Sebag, Z. Hu, K.D.O. Lima, H. Xiang, Z. Chen, ACS Appl Energy Mater. 1, 3537 (2018)

    Google Scholar 

  3. X.S. Deng, C.X. Zhang, J.F. Zheng, X. Zhou, M.D. Yu, X.H. Chen, S.M. Huang, Appl. Surf. Sci. 485, 332 (2019)

    CAS  Google Scholar 

  4. Q.Y. Guo, J.H. Wu, Y.Q. Yang, X.P. Liu, J.B. Jia, J. Dong, Z. Lan, J.M. Lin, M.L. Huang, Y. Wei, J. Power Sources 426, 178 (2019)

    CAS  Google Scholar 

  5. M.Y. Zhao, B.H. Li, P.Y. Wang, L.F. Lu, Z.C. Zhang, L. Liu, S.F. Wang, D.D. Li, R. Wang, F. Zhang, Adv. Mater. 30, 1804982 (2018)

    Google Scholar 

  6. Q.Q. Ma, J. Wang, Z.H. Li, X.B. Lv, L. Liang, Q. Yuan, Small 15, 1804969 (2019)

    Google Scholar 

  7. K.K. Zhang, Q. Zhao, S.R. Qin, Y. Fu, R.Z. Liu, J.F. Zhi, C.G. Shan, J. Colloid Interface Sci. 537, 316 (2019)

    CAS  Google Scholar 

  8. V. Fiorenzo, N. Rafik, Z. Alicia, J.D.L.F. Angeles, S.R. Francisco, M.M. Laura, M.R. Emma, J. Daniel, G.S. José, J.A. Capobianco, ACS Nano 4, 3254 (2010)

    Google Scholar 

  9. L. Labrador-Páez, M. Pedroni, A. Speghini, J. García-Solé, P. Haro-González, D. Jaque, Nanoscale 10, 22319 (2018)

    Google Scholar 

  10. X. Chen, D.F. Peng, Q. Ju, F. Wang, Chem. Soc. Rev. 44, 1318 (2015)

    Google Scholar 

  11. X. Qin, X.W. Liu, W. Huang, M. Bettinelli, X.G. Liu, Chem. Rev. 117, 4488 (2017)

    CAS  Google Scholar 

  12. D.Q. Chen, J.S. Zhong, M.Y. Ding, Z.G. Ji, Sci. Adv. Mater. 9, 359 (2017)

    CAS  Google Scholar 

  13. X.G. Liu, C.H. Yan, J.A. Capobianco, Chem. Soc. Rev. 44, 1299 (2015)

    CAS  Google Scholar 

  14. E. Van der Kolk, P. Dorenbos, K. Krämer, D. Biner, H.-U. Güdel, Phys. Rev. B 77, 125110 (2008)

    Google Scholar 

  15. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, S.R. Lüthi, Cheminform 35, 1244 (2010)

    Google Scholar 

  16. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J.A. Capobianco, Adv. Mater. 21, 4025 (2009)

    CAS  Google Scholar 

  17. G.Y. Chen, T.Y. Ohulchanskyy, K. Aliaksandr, A. Hans, P.N. Prasad, ACS Nano 5, 4981 (2011)

    CAS  Google Scholar 

  18. M.Y. Ding, C.H. Lu, L.H. Cao, W. Huang, Y.R. Ni, Z.Z. Xu, CrystEngComm 15, 6015 (2013)

    CAS  Google Scholar 

  19. F.E. Auzel, Proc IEEE 61, 758 (2005)

    Google Scholar 

  20. J.C. Wright, D.J. Zalucha, H.V. Lauer, D.E. Cox, F.K. Fong, J. Phys. Chem. C 44, 781 (1973)

    CAS  Google Scholar 

  21. Y.F. Bai, Y.X. Wang, K. Yang, X.R. Zhang, G.Y. Peng, Y.L. Song, J. Phys. Chem. C 112, 12259 (2008)

    CAS  Google Scholar 

  22. Q. Chen, J.H. Sui, C. Wei, Nanoscale 4, 779 (2012)

    Google Scholar 

  23. W.B. Niu, S.L. Wu, S.F. Zhang, L.T. Su, A.I.Y. Tok, Nanoscale 5, 8164 (2013)

    CAS  Google Scholar 

  24. C. Würth, S. Fischer, B. Grauel, A.P. Alivisatos, U. Resch-Genger, J. Am. Chem. Soc. 55, 1 (2018)

    Google Scholar 

  25. S. Stefan, A. Thomas, H.Q. Wang, N. Thomas, B. Oliver, Nano Lett. 10, 134 (2010)

    Google Scholar 

  26. Z.Q. Li, X.D. Li, Q.Q. Liu, X.H. Chen, Z. Sun, C. Liu, X.J. Ye, S.M. Huang, Nanotechnology 23, 025402 (2012)

    CAS  Google Scholar 

  27. D.G. Yin, C.C. Wang, J. Ouyang, K. Song, B. Liu, X.Z. Cao, L. Zhang, Y.L. Han, X. Long, M.H. Wu, Dalton Trans. 43, 12037 (2014)

    CAS  Google Scholar 

  28. G. Tian, Z.J. Gu, L.J. Zhou, W.Y. Yin, X.X. Liu, L. Yan, S. Jin, W.L. Ren, G.M. Xing, S.J. Li, Adv. Mater. 24, 1226 (2012)

    CAS  Google Scholar 

  29. S.L. Gai, C.X. Li, P.P. Yang, J. Lin, Chem. Rev. 114, 2343 (2013)

    Google Scholar 

  30. X.W. Wang, X. Zhang, Y.G. Wang, H.Y. Li, J. Xie, T. Wei, Q.W. Huang, X.J. Xie, L. Huang, W. Huang, Dalton Trans. 46, 8968 (2017)

    CAS  Google Scholar 

  31. S.W. Zhao, W. Liu, X.Y. Xue, Y.S. Yang, Z. Zhao, Y. Wang, B. Zhou, RSC Adv. 6, 81542 (2016)

    CAS  Google Scholar 

  32. C. Homann, L. Krukewitt, F. Frenzel, B. Grauel, C. Würth, U. Reschgenger, M. Haase, Angew. Chem. Int. Ed. 57, 8765 (2018)

    CAS  Google Scholar 

  33. G.Y. Chen, H.C. Liu, G. Somesfalean, Y.Q. Sheng, H.J. Liang, Z.G. Zhang, Q. Sun, F.P. Wang, Appl. Phys. Lett. 92, 113114 (2008)

    Google Scholar 

  34. L.H. Tian, S. Mho, Solid State Commun. 125, 647 (2003)

    CAS  Google Scholar 

  35. B.P. Singh, J. Singh, R.A. Singh, RSC Adv. 4, 32605 (2014)

    Google Scholar 

  36. G.Y. Chen, H.C. Liu, H.G. Liang, G. Somesfalean, Z.G. Zhang, J. Phys. Chem. C 112, 12030 (2008)

    CAS  Google Scholar 

  37. Z.S. Chen, T.F. Chen, W.P. Gong, W.Y. Xu, D.Y. Wang, Q.K. Wang, J. Am. Ceram. Soc. 96, 1857 (2013)

    CAS  Google Scholar 

  38. L. Lei, D.Q. Chen, J. Xu, R. Zhang, Y.S. Wang, Chemistry 9, 728 (2014)

    CAS  Google Scholar 

  39. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 463, 1061 (2010)

    CAS  Google Scholar 

  40. H. Na, J.S. Jeong, H.J. Chang, H.Y. Kim, K. Woo, K. Lim, K.A. Mkhoyan, H.S. Jang, Nanoscale 6, 7461 (2014)

    CAS  Google Scholar 

  41. S. Sinha, M.K. Mahata, K. Kumar, New J. Chem. 43, 5960 (2019)

    CAS  Google Scholar 

  42. R. Dey, A. Kumari, A.K. Soni, V.K. Rai, Sens. Actuators B 210, 581 (2015)

    CAS  Google Scholar 

  43. Z. Chen, G.B. Wu, H. Jia, K. Sharafudeen, W.B. Dai, X.W. Zhang, S.F. Zeng, J.M. Liu, R.F. Wei, S.C. Lv, J. Phys. Chem. C 119, 24056 (2015)

    CAS  Google Scholar 

  44. P. Kubelka, F. Munk, Z Tech. Phys. 12, 593 (1931)

    Google Scholar 

  45. J. Tauc, Mater. Res. Bull. 5, 721 (1970)

    CAS  Google Scholar 

  46. J.L. Rupp, E. Fabbri, D. Marrocchelli, J.W. Han, D. Chen, E. Traversa, H.L. Tuller, B. Yildiz, Adv. Funct. Mater. 24, 1562 (2014)

    CAS  Google Scholar 

  47. A.J. Deotale, R. Nandedkar, Mater. Today 3, 2069 (2016)

    Google Scholar 

  48. H.J. Liang, G.Y. Chen, H.C. Liu, Z.G. Zhang, J. Lumin. 129, 197 (2009)

    CAS  Google Scholar 

  49. S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. 94, 4743 (2003)

    CAS  Google Scholar 

  50. F. Vetrone, R. Naccache, A. Zamarron, ACS Nano 4, 3254 (2010)

    CAS  Google Scholar 

  51. A. Oliveria, Appl. Phys. Lett. 72, 753 (1998)

    Google Scholar 

  52. O. Savchuk, J. Carvajal, C. Brites, L. Carlos, M. Aguilo, F. Diaz, Nanoscale 10, 6602 (2018)

    CAS  Google Scholar 

  53. K.M. Du, X. Xu, S. Yao, P.P. Lei, L.L. Dong, M.L. Zhang, J. Feng, H.G. Zhang, Cryst. Eng. Commun. 20, 1945 (2018)

    CAS  Google Scholar 

  54. L.H. Fischer, G.S. Harms, O.S. Wolfbeis, Angew. Chem. Int. Ed. 50, 4546 (2011)

    CAS  Google Scholar 

  55. M.K. Mahata, K. Kumar, V.K. Rai, Sens. Actuators B 209, 775 (2015)

    CAS  Google Scholar 

  56. Z.Y. Wang, H. Jiao, Z.L. Fu, Inorg. Chem. 57, 8841 (2018)

    CAS  Google Scholar 

  57. P. Du, L.H. Luo, X.Y. Huang, J.S. Yu, Colloid Interface Sci. 514, 172 (2018)

    CAS  Google Scholar 

  58. B.P. Kore, A. Kumar, L. Erasmus, R.E. Kroon, J.J. Terblans, S.J. Dhoble, H.C. Swart, Inorg. Chem. 57, 288 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (Nos. 18ZR1411900, 18ZR1411000) and National Natural Science Foundation of China (No. 11274119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Yu, M., Zhou, X. et al. Highly bright and sensitive thermometric LiYF4:Yb, Er upconversion nanocrystals through Mg2+ tridoping. J Mater Sci: Mater Electron 31, 3415–3425 (2020). https://doi.org/10.1007/s10854-020-02890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02890-1

Navigation