Skip to main content
Log in

Effect of CdO ratios on the structural and optical properties of CdO–TiO2 nanocomposite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposite CdO–TiO2 thin films have been successfully synthesized via sol–gel and spin coating techniques. The physical properties of the prepared thin films were studied by varying the Cd:Ti ratio (0, 25, 50, 75, and 100%). The structural characterization has been performed by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Optical transmission and reflectivity of the obtained films have been studied by UV–Vis-NIR spectroscopy. The obtained results showed that the amount of Cd into the TiO2 matrix can significantly affect the properties of TiO2 thin films; the XRD analysis revealed the appearance of new diffraction planes by increasing the of Cd:Ti ratios, a fact that was also confirmed by the Raman spectra. Effects of incorporated Cd amounts on the crystal phase, crystallite size, surface morphology were investigated. The results showed that most of Cd2+ substituted Ti4+ in the crystal lattice of TiO2 and led to the appearance of the CdTiO3 phase for thin films at a relatively low temperature, which inhibited the growth of crystallite size and suppressed the transformation from anatase to rutile of TiO2 at 450 °C. Moreover, formation of different binary and ternary nanocomposite films are justified by varying the Cd:Ti ratios. The optical analysis revealed a high transparency in the visible region, strongly affected by the different Cd:Ti ratios. Incorporated CdO initially increased the bandgap for low values of the Cd:Ti ratio, followed by a bandgap decrease for the highest one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zhang, F. Yongqing, D. Hejun, Y. Liu, T. Chen, Adv. Mater. Micro. Nano. Syst. 1721(1), 3836 (2004)

    Google Scholar 

  2. S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coat. Technol. 167(2–3), 113–119 (2003)

    CAS  Google Scholar 

  3. J. Musil, Surf. Coat. Technol. 125(1–3), 322–330 (2000)

    CAS  Google Scholar 

  4. S. Veprek, S. Reiprich, Thin Solid Films 268(1–2), 64–71 (1995)

    CAS  Google Scholar 

  5. L. Maya, W.R. Allen, Gold nanocomposites. J. Vac. Sci. Technol. B 13(2), 361–365 (1995)

    CAS  Google Scholar 

  6. F. Mazaleyrat, L.K. Varga, J. Magn. Magn. Mater. 215–216, 253–259 (2000)

    Google Scholar 

  7. P.A. Radi, A.G. Brito-Madurro, J.M. Madurro, N.O. Dantas, Br. J. Phys. 36(2a), 412–414 (2006)

    CAS  Google Scholar 

  8. B. Cantor, C.M. Allen, R. Dunin-Burkowski, M.H. Green, J.L. Hutchinson, K.A.Q. O’Reilly, A.K. Petford-Long, P. Schumacher, J. Sloan, P.J. Warren, Scripta Mater. 44, 2055–2059 (2001)

    CAS  Google Scholar 

  9. C.V. Reddy, B. Babu, J. Shim, J. Phys. Chem. Solids 112, 20–28 (2018)

    CAS  Google Scholar 

  10. H.A. Azimi-Fouladi, S.A. Hassenzadeh-Tabrizi, A. Saffar-Teluri, Ceram. Int. 44(4), 4292–4297 (2018)

    CAS  Google Scholar 

  11. R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125(1–2), 277–280 (2011)

    CAS  Google Scholar 

  12. Ü.Ö.A. Arier, Optik 127(16), 6439–6445 (2016)

    Google Scholar 

  13. P. Margan, M. Haghighi, J. Sol-Gel Sci. Technol. 81(2), 556–569 (2017)

    CAS  Google Scholar 

  14. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solids. 112, 106–118 (2018)

    CAS  Google Scholar 

  15. H. Taniguchi, H. Moriwake, T. Yagi, M. Itoh, Adv. Ferroelectr. 13, 279 (2013)

    Google Scholar 

  16. M.E. Guzhva, V.V. Lemanov, P.A. Markovin, Phys. Solid State 43(11), 2146–2153 (2011)

    Google Scholar 

  17. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Sci. Eng. B 130(1–3), 163–172 (2006)

    CAS  Google Scholar 

  18. D. Ponnusamy, A.K. Prasad, S. Madanagurusamy, Mikrochim. Acta 183(1), 311–317 (2016)

    CAS  Google Scholar 

  19. Z.N. Abdul-Ameer, I.R. Agool, World Sci News 23, 35–45 (2015)

    CAS  Google Scholar 

  20. F. Hanini, A. Bouabellou, Y. Bouachiba, F. Kermiche, A. Taabouche, K. Boukheddaden, Afrique Sci. 10(1), 10–20 (2014)

    Google Scholar 

  21. A. Stoyonova, H. Hitkova, A. Bachvarova Nedelcheva, R. Iordanova, N. Ivanova, M. Sredkova, J. Chem. Technol. Metall. 48(2), 154–161 (2013)

    Google Scholar 

  22. A. Shalaby, A. Bachvarova Nedelcheva, R. Iordanova, Y. Dimitriev, A. Stoyanova, H. Hitkova, N. Ivanova, M. Sredkova, J. Optoelectron. Adv. Mater. 17(1–2), 248–256 (2015)

    CAS  Google Scholar 

  23. R. Bahloul, S. Sayouri, K. Limame, M.M. Yahyaoui, B. Jaber, L. Laonab, J. Ceram. Process. Res. 18, 1–7 (2017)

    Google Scholar 

  24. S.B. Kokane, S.D. Sartale, K.G. Girijia, I. Jagannath, R. Sasikala, Int. J. Hydrogen Energy 40(39), 13431–13442 (2015)

    CAS  Google Scholar 

  25. F.A. Harnández-Garia, G. Torres-Delgado, R. Castanedo-Pérez, O. Zelaya-Angel, J. Photochem. Photobiol. A 310, 52–59 (2015)

    Google Scholar 

  26. H.M. Ghuson, M.S. Ahmed, K. Dunia, A.A. Kadhim, Eng. Technol. J. 33(5), 918–931 (2015)

    Google Scholar 

  27. S.A. Mayén-Harnandez, J. Santos-Cruzy, G. Torres-Delgado, R. Castanedo-Pérez, J. Marquez-Marin, J.C. Mendoza-Alverez, O. Zelaya-Angel, Surf. Coat. Technol. 200(11), 3567–3572 (2006)

    Google Scholar 

  28. Z.H. Cui, F. Wu, H. Jiang, Phys. Chem. Chem. Phys. 18, 29914–29922 (2016)

    CAS  Google Scholar 

  29. T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. Li Bassi, C.E. Bottani, C. Ducati, Phys. Rev. B 75(4–15), 045416 (2007)

    Google Scholar 

  30. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46(4), 855–874 (2011)

    CAS  Google Scholar 

  31. K. Sahbeni, I. Sta, M. Jlassi, M. Kandyla, M. Hajji, M. Kompitsas, W. Dimassi, J. Phys. Chem. Biophys. 7(3), 257 (2017)

    Google Scholar 

  32. T. Mitsuhashi, O.J. Kleppa, J. Am. Ceram. Soc. 62(7–8), 356–357 (1979)

    CAS  Google Scholar 

  33. D. Barsani, P.P. Lottici, M. Canali, A. Montenero, J. Sol–Gel Sci. Technol. 8, 337–342 (1997)

    Google Scholar 

  34. C. Karunakaran, A. Vijayabalan, Mater. Sci. Semicond. Process. 16(6), 1992–1996 (2013)

    CAS  Google Scholar 

  35. P. Dhivya, A.K. Prasad, M. Sridharan, Sens. Actuators B. 222, 987–993 (2016)

    CAS  Google Scholar 

  36. M.S. Hassan, T. Amna, M.S. Khil, Ceram. Int. 40(1), 423–427 (2014)

    Google Scholar 

  37. F. Dachiller, P.Y. Simons, R. Roy, Am. Miner. 53(11–12), 1929–1939 (1968)

    Google Scholar 

  38. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48(8), 391–398 (1965)

    CAS  Google Scholar 

  39. Z.M. Wang, G. Yang, P. Biswas, W. Bresser, P. Boolchand, Powder Technol. 114(1–3), 197–204 (2001)

    CAS  Google Scholar 

  40. Y.C. Zhang, G.L. Wang, X.Y. Hu, W.D. Zhou, J. Cryst. Growth. 285(4), 600–605 (2005)

    CAS  Google Scholar 

  41. M. Kharkwal, S. Uma, R. Nagarajan, Indian. J. Chem. 51(11), 1538–1544 (2012)

    Google Scholar 

  42. J.G. Huang, X.T. Guo, B. Wang, L.Y. Li, M.X. Zhao, L.L. Dong, X.J. Liu, Y.T. Huang, J. Spectrosc. 8, 681850 (2015)

    Google Scholar 

  43. S. Yun, S. Lim, J. Colloid Interface Sci. 360(2), 430–439 (2011)

    CAS  Google Scholar 

  44. M. Chaari, A. Matoussi, Mater. Sci. Eng. B 178(17), 1130–1139 (2013)

    CAS  Google Scholar 

  45. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Chem. Phys. Lett. 555, 182–186 (2013)

    CAS  Google Scholar 

  46. N. Khatun, P.R. Anita, D. Bhattacharya, S.N. Jha, S. Biring, S. Sen, Ceram. Int. 43(16), 14128–14134 (2017)

    CAS  Google Scholar 

  47. S.A. Mayén-Harnandez, G. Torres-Delgado, R. Castanedo-Pérez, J.G. Mendoza-Alvarez, O. Zelaya-Angel, Mater. Chem. Phys. 115(2–3), 530–535 (2009)

    Google Scholar 

  48. C.L. Luu, Q.T. Nguyen, S.T. Ho, T. Nguyen, Adv. Nat. Sci. 4(3), 035003–035015 (2013)

    Google Scholar 

  49. P. Sakthivel, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. 26(3), 1533–1542 (2015)

    CAS  Google Scholar 

  50. I.E. Paulauskas, D.R. Modeshia, T.T. Ali, E. El-Mossalamy, A.Y. Obaib, S.N. Bsahel, A.A. Al-Ghamdi, F.K. Sartain, Platinum Met. Rev. 57(1), 32–43 (2013)

    CAS  Google Scholar 

  51. S.M.H. Al-Jawad, A.A. Taha, M.M. Salim, Optik 142, 42–53 (2017)

    CAS  Google Scholar 

  52. T. Srinivasulu, K. Saritha, K.T. Ramakrishna Reddy, Mod. Elect. Mat. 3(2), 76–85 (2017)

    Google Scholar 

  53. M.E. de Anda Reyes, G. Torres Delgado, R. Castanedo Perez, J. Màrquez Marin, O. Zelaya Angel, J. Photochem. Photobiol. A 228(1), 22–27 (2012)

    Google Scholar 

  54. I. Sta, M. Jlassi, M. Hajji, M.F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, H. Ezzaouia, J. Sol-Gel Sci. Technol. 72, 421–427 (2014)

    CAS  Google Scholar 

  55. I. BenMiled, M. Jlassi, I. Sta, M. Dhaouadi, M. Hajji, G. Mousdis, M. Kompitsas, H. Ezzaouia, J. Sol-Gel Sci. Technol. 83(2), 259–267 (2017)

    Google Scholar 

  56. J.C. Yu, W. Ho, Z. Jiang, L. Zhang, Chem. Mater. 14(9), 3808–3816 (2002)

    CAS  Google Scholar 

  57. A. Boutlala, M. Mahtili, A. Bouaballou, Mater. Sci. Eng. 108, 012048 (2016)

    Google Scholar 

  58. P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)

    Google Scholar 

Download references

Acknowledgments

Part of this work has been performed in the Nanotechnology on Surfaces Laboratory, Institute of Materials Science of Seville (CSIC-Univ. Seville), Seville ES-41092, Spain and financed by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sahbeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahbeni, K., Jlassi, M., Khamlich, S. et al. Effect of CdO ratios on the structural and optical properties of CdO–TiO2 nanocomposite thin films. J Mater Sci: Mater Electron 31, 3387–3396 (2020). https://doi.org/10.1007/s10854-020-02887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02887-w

Navigation