Skip to main content
Log in

Electrical conductivity and Vickers microhardness of composites synthesized from multiwalled carbon nanotubes and carbon spheres with poly(methyl methacrylate): a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Since the discovery of carbon nanotubes, they have been intensely studied as filler materials into different matrices, including polymers to obtaining composites with enhancing properties. Carbon spheres are other type of nanostructures that have not been enough studied as reinforcement material. Polymeric composites with enhanced properties have gradually replaced many of the conventional materials in several areas. In this research, a comparative study of composites based in MWCNTs and CSs incorporated in poly(methyl methacrylate) matrices by mixing solution method was carried out. Composites with 2 wt%, 3 wt%, and 4 wt% of MWCNTs and CSs were obtained through solution mixing and were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Carbon sphere composites were observed with better dispersion than carbon nanotube composites through SEM. D, G, and G’ characteristic bands of carbon nanostructures and typical bands of PMMA were observed by Raman spectroscopy in all composites. C–H, C=O, and CH2 vibrations were depicted in composites spectra by FTIR. Vickers microhardness and electrical conductivity of composites were measured. A significant increasing in electrical conductivity was obtained in MWCNTs/PMMA composites, reaching values up to 8.45 × 10–5 S/cm. Nevertheless, the highest electrical conductivity values were observed in CSs composites (7.98 × 10–4 S/cm). Vickers microhardness also was enhanced in all composites; however, CSs/PMMA composites showed the highest values in contrast with MWCNTs/PMMA composites. The major Vickers and electrical conductivity properties of CSs/PMMA composites are attributed to better carbon spheres dispersion into polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A. Isaza Merino, J.E. Ledezma Sillas, J.M. Meza, J.M. Herrera Ramirez, J. Alloy Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.11.348

    Article  Google Scholar 

  2. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Mod. Electron. Mater. (2016). https://doi.org/10.1016/j.moem.2017.02.002

    Article  Google Scholar 

  3. G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A. Shah, S. Mian, G. Ali, Carbon Res. (2019). https://doi.org/10.3390/c5010003

    Article  Google Scholar 

  4. M. Porwal, V. Rastogi, A. Kumar, MOJ Bioequiv. Avail. (2017). https://doi.org/10.15406/mojbb.2017.03.00045

    Article  Google Scholar 

  5. N. Koprinarov, M. Konstantinova, J. Mater. Sci. (2011). https://doi.org/10.1007/s10853-010-4951-0

    Article  Google Scholar 

  6. A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadop, Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-3046-3

    Article  Google Scholar 

  7. B.R.C. de Menezes, K.F. Rodrigues, B.C. da Silva Fonseca, R.G. Ribas, T.L. do Amaral Montanheiro, G.P. Thim, J. Mater. Chem. B. (2019). https://doi.org/10.1039/C8TB02419G

    Article  Google Scholar 

  8. A.A. Deshmukh, S.D. Mhlanga, N.J. Coville, Mater. Sci. Eng. (2010). https://doi.org/10.1016/j.mser.2010.06.017

    Article  Google Scholar 

  9. N.J. Coville, S.D. Mhlanga, E.N. Nxumalo, A. Shaikjee, S. Afr. J. Sci. (2011). https://doi.org/10.4102/sajs.v107i3/4.418

    Article  Google Scholar 

  10. Z. Wang, H. Ogata, G.J.H. Melvin, M. Obata, S. Morimoto, J. Ortiz-Medina, R. Cruz-Silva, M. Fujishige, K. Takeuchi, H. Muramatsu, T.Y. Kim, Y. AhmKim, T. Hayashi, M. Terrones, Y. Hashimoto, M. Endo, Carbon (2017). https://doi.org/10.1016/j.carbon.2017.06.003

    Article  Google Scholar 

  11. D. Sibera, U. Narkiewicz, J. Kapica, J. Serafin, B. Michalkiewicz, R.J. Wróbel, A.W. Morawski, J. Porous Mater. (2018). https://doi.org/10.1007/s10934-018-0601-8

    Article  Google Scholar 

  12. C.A. Nieves, I. Ramos, N.J. Pinto, N.A. Zimbovskaya, J. Appl. Phys. (2016). https://doi.org/10.1063/1.4955166

    Article  Google Scholar 

  13. S.Z. Al Sheheri, Z.M. Al-Amshany, Q.A. Al Sulami, N.Y. Tashkandi, M.A. Hussein, R.M. El-Shishtawy, Des. Monomers Polym. (2018). https://doi.org/10.1080/15685551.2019.1565664

    Article  Google Scholar 

  14. M. Šupová, G. Simha Martynková, K. Barabaszová, Sci. Adv. Mater. (2011). https://doi.org/10.1166/sam.2011.1136

    Article  Google Scholar 

  15. J. Chen, B. Liu, X. Gao, D. Xu, RSC Adv. (2018). https://doi.org/10.1039/c8ra04205e

    Article  Google Scholar 

  16. J. Qian, J.H. Pu, X.J. Zha, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1915-1

    Article  Google Scholar 

  17. J. Wie, J. Kim, Polymers. (2019). https://doi.org/10.3390/polym11081347

    Article  Google Scholar 

  18. G. Singer, P. Siedlaczek, G. Sinn, H. Rennhofer, M. Micušík, M. Omastová, M.M. Unterlass, J. Wendrinsky, V. Milotti, F. Fedi, T. Pichler, H.C. Lichtenegger, Nanomaterials. (2018). https://doi.org/10.3390/nano8110912

    Article  Google Scholar 

  19. S. Roy, R.S. Petrova, S. Mitra, Nanotechnol. Rev. (2018). https://doi.org/10.1515/ntrev-2018-0068

    Article  Google Scholar 

  20. R. Atif, F. Inam, Beilstein J. Nanotechnol. (2016). https://doi.org/10.3762/bjnano.7.109

    Article  Google Scholar 

  21. H. Cui, X. Yan, M. Monasterio, F. Xing, Nanomaterials. (2017). https://doi.org/10.3390/nano7090262

    Article  Google Scholar 

  22. M.S. Azarniya, S. Safavi, A. Sovizi, B. Azarniya, H.R. Chen, S. H. Madaah Hosseini, S. Ramakrishna. Metals. (2017). https://doi.org/10.3390/met7100384

    Article  Google Scholar 

  23. R. Niu, J. Gong, D.H. Xu, T. Tang, Z.Y. Sun, Chin. J. Polym. Sci. (2015). https://doi.org/10.1007/s10118-015-1704-1

    Article  Google Scholar 

  24. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Composites A (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  25. B. Sundaray, V. Subramanian, T.S. Natarajan, K. Krishnamurthy, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2193462

    Article  Google Scholar 

  26. H. Li, Y. Qiu, R. Soc, Open Sci. (2019). https://doi.org/10.1098/rsos.190241

    Article  Google Scholar 

  27. G. Mittal, K. Yop Rhee, S. Jin Park, Polymers. (2016). https://doi.org/10.3390/polym8050169

    Article  Google Scholar 

  28. I. Kausar, B. Rafique, Muhammad. Polym.-Plast. Technol. (2016). https://doi.org/10.1080/03602559.2016.1163588

    Article  Google Scholar 

  29. P. Kalakonda, S. Banne, Nanotechnol. Sci. Appl. (2017). https://doi.org/10.2147/NSA.S123734

    Article  Google Scholar 

  30. J.T. Luo, H.C. Wen, W.F. Wu, C.P. Chou, Polym. Composite. (2008). https://doi.org/10.1002/pc.20388

    Article  Google Scholar 

  31. E. Abdel-Fattah, Coatings. (2019). https://doi.org/10.3390/coatings9040228

    Article  Google Scholar 

  32. Y.Y. Huang, E.M. Terentjev, Polymers. (2012). https://doi.org/10.3390/polym4010275

    Article  Google Scholar 

  33. J.H. Du, J. Bai, H.M. Cheng, Express Polym. Lett. (2007). https://doi.org/10.3144/expresspolymlett.2007.39

    Article  Google Scholar 

  34. K. Yang, Z.L. Yi, Q.F. Jing, R.L. Yue, W. Jiang, D.H. Lin, Chin. Sci. Bull. (2013). https://doi.org/10.1007/s11434-013-5697-2

    Article  Google Scholar 

  35. J.M. Bressanin, V.A. Assis Júnior, J.R. Bartoli, Chem. Pap. (2018). https://doi.org/10.1007/s11696-0180443-5

    Article  Google Scholar 

  36. S. Wu, S. Peng, C.H. Wang, Polymers. (2018). https://doi.org/10.3390/polym10050542

    Article  Google Scholar 

  37. W.S. Machado, P.L. Athayde, M.A. Mamo, W.A.L. Van Otterlo, N.J. Coville, I.A. Hümmelgen, Org. Electron. (2010). https://doi.org/10.1016/j.orgel.2010.07.028

    Article  Google Scholar 

  38. F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, L. García-González, L. Zamora-Peredo, M.L. Mondragón-Sánchez, Mater. Res. (2016). https://doi.org/10.1590/1980-5373-MR-2016-0783

    Article  Google Scholar 

  39. C.J. Gutiérrez-García, J.M. Ambriz-Torres, J.J. Contreras-Navarrete, F.G. Granados-Martínez, D.L. García-Ruiz, L. García-González, L. Zamora-Peredo, L.F. Ortega-Varela, A. Richaud, F. Méndez, L. Domratcheva-Lvova, Physica E. (2019). https://doi.org/10.1016/j.physe.2019.04.007

    Article  Google Scholar 

  40. J.M. Ambriz Torres, C.J. Gutiérrez García, J.J. Contreras Navarrete, F.G. Granados Martínez, D.L. García Ruiz, N. Flores Ramírez, M.L. Mondragón Sánchez, P. Garnica González, L. García González, L. Zamora Peredo, O. Hernández Cristóbal, F. Méndez, L. Domratcheva Lvova, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07326-z

    Article  Google Scholar 

  41. R. Kinder, M. Mikolášek, D. Donoval, J. Kováč, M. Tlaczala, J. Electr. Eng. (2012). https://doi.org/10.2478/jeec-2012-0015

    Article  Google Scholar 

  42. Y. Yao, X. Duan, J. Luo, T. Liu, Nanotechnology. (2017). https://doi.org/10.1088/1361-6528/aa8585

    Article  Google Scholar 

  43. J. Banaszczyk, A. Schwarz, G. De Mey, L. Van Langenhove, J. Appl. Polym. Sci. (2010). https://doi.org/10.1002/app.32186

    Article  Google Scholar 

  44. T. Matsumura, Y. Sato, J. Mod. Phys. (2010). https://doi.org/10.4236/jmp.2010.15048

    Article  Google Scholar 

  45. A.K. Gupta, R. Bajpai, J.M. Keller, Express Polym. Lett. (2007). https://doi.org/10.3144/expresspolymlett.2007.84

    Article  Google Scholar 

  46. K. Godyń, A. Kožušníková, Energies. (2019). https://doi.org/10.3390/en12091756

    Article  Google Scholar 

  47. E. Broitman, Tribol. Lett. (2017). https://doi.org/10.1007/s11249-016-0805-5

    Article  Google Scholar 

  48. M. Vijayan, R. Rajendran, R. Sreevatsan, Int. Dent. J. Stud. Res. (2018) https://doi.org/10.18231/2278-3784.2018.0015

    Article  Google Scholar 

  49. S.A. Abdullayeva, A.B. Huseynov, N.N. Musayeva, R.B. Jabbarov, C.A. Sultanov, A.D. Guliyev, R.F. Hasanov, Adv. Mater. Phys. Chem. (2016). https://doi.org/10.4236/ampc.2016.611028

    Article  Google Scholar 

  50. R. Santos, S. Mould, P. Formánek, M. Paiva, J. Covas, Polymers. (2018). https://doi.org/10.3390/polym10020222

    Article  Google Scholar 

  51. J.H. Ha, S.E. Lee, S.H. Park, Materials. (2019). https://doi.org/10.3390/ma12233823

    Article  Google Scholar 

  52. Y. Hu, D. Li, P. Tang, Y. Bin, H. Wang, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.108175

    Article  Google Scholar 

  53. D. Tessema, J. Zhao, S. Moll, R. Xu, C. Yang, S.K. Li, A. Kumar, Kidane. Polym. Test. (2017). https://doi.org/10.1016/j.polymertesting.2016.11.015

    Article  Google Scholar 

  54. K. Žukienė, E. Žukauskas, R.J. Kažys, D. Zeleniakienė, V. Jankauskaitė, Polym. Composite. (2017). https://doi.org/10.1002/pc.24665

    Article  Google Scholar 

  55. K. Shehzad, M.N. Ahmad, T. Hussain, M. Mumtaz, A.T. Shah, A. Mujahid, C. Wang, J. Ellingsen, Z.M. Dang, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4892156

    Article  Google Scholar 

  56. A. Tomova, G. Gentile, A. Grozdanov, M.E. Errico, P. Paunovic, M. Avella, A.T. Dimitrov, Acta Phys. Pol. A (2017). https://doi.org/10.12693/APhysPolA.132.1251

    Article  Google Scholar 

  57. G. Krishnamurthy, R. Namitha, J. Chil. Chem. Soc. (2012). https://doi.org/10.4067/S0717-97072013000300030

    Article  Google Scholar 

  58. X. Qi, Q. Hu, J. Xu, R. Xie, Y. Jiang, W. Zhong, Y. Du, RSC Adv. (2015). https://doi.org/10.1039/C5RA14782D

    Article  Google Scholar 

  59. L. Bokobza, J. Zhang, Express Polym. Lett. (2012). https://doi.org/10.3144/expresspolymlett.2012.63

    Article  Google Scholar 

  60. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E. Hernández, R. Soc. (2004). https://doi.org/10.1098/rsta.2004.1430

    Article  Google Scholar 

  61. J.C. Hsu, W. Cao, F. Yang, T.J. Yang, S. Lee, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c6cp08738h

    Article  Google Scholar 

  62. F.J. Carrión, C. Espejo, J. Sanes, M.D. Bermúdez, Composite Sci. Technol. (2010). https://doi.org/10.1016/j.compscitech.2010.08.018

    Article  Google Scholar 

  63. A. Fraczek-Szczypta, E. Menaszek, T.B. Syeda, A. Misra, M. Alavijeh, J. Adu, S. Blazewicz, J. Nanoparticle Res. (2012). https://doi.org/10.1007/s11051-012-1181-1

    Article  Google Scholar 

  64. Y. Jeong, J. Kim, G.W. Lee, Colloid Polym. Sci. (2010). https://doi.org/10.1007/s00396-009-2127-8

    Article  Google Scholar 

  65. H.D Le, T.T. Ngo, D.Q. Le, X.N. Nguyen, N.M. Phan, Adv. Nat. Sci. Nanosci. Nanotechnol. (2013) https://doi.org/10.1088/2043-6262/4/3/035012

    Article  Google Scholar 

  66. N.B. Mohammed, R.M. Nor, N. Benouattas, J. Nano Electron. Phys. (2018) https://doi.org/10.21272/jnep.10(4).04006

    Article  Google Scholar 

  67. W. Ma, Y. Zhao, Z. Zhu, L. Guo, Z. Cao, Y. Xia, H. Yang, F. Gong, J. Zhong, Appl. Sci. (2019). https://doi.org/10.3390/app9030603

    Article  Google Scholar 

  68. P. Mahanandia, J.J. Schneider, M. Khaneft, B. Stühn, T.P. Peixoto, B. Drossel, Phys. Chem. Chem. Phys. (2010). https://doi.org/10.1039/b922906j

    Article  Google Scholar 

  69. S.B. Aziz, OGh Abdullah, A.M. Hussein, H.M. Ahmed, Polymers. (2017). https://doi.org/10.3390/polym9110626

    Article  Google Scholar 

  70. T. Liang, C. Yan, S. Zhou, Y. Zhang, B. Yang, J. Geophys. Eng. (2017). https://doi.org/10.1088/1742-2140/aa6e7e

    Article  Google Scholar 

  71. M.P. Tran, C. Detrembleur, M. Alexandre, C. Jerome, J.M. Thomassin, Polymer (2013). https://doi.org/10.1016/j.polymer.2013.03.053

    Article  Google Scholar 

  72. P.H. Coelho, M.S. Marchesin, A.R. Morales, J.R. Bartoli, Mater. Res. (2014). https://doi.org/10.1590/S1516-14392014005000059

    Article  Google Scholar 

  73. W. Zheng, S.C. Wong, Composites Sci. Technol. (2003). https://doi.org/10.1016/S0266-3538(02)00201-4

    Article  Google Scholar 

  74. J.H. Lee, Y.F. Gao, K.E. Johanns, G.M. Pharr, Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2012.07.011

    Article  Google Scholar 

  75. G. Zamfirova, V. Gaydarov, D. Lopez Velazquez, Chem. Chem. Technol. (2013) https://doi.org/10.23939/chcht07.01.061

    Article  Google Scholar 

  76. I.M. Low, C. Shi, J. Mater. Sci. (1998). https://doi.org/10.1023/A:1006517005082

    Article  Google Scholar 

  77. R. Karthicka, P. Sirisha, M. Ravi Sankar, Procedia. Mater. Sci. (2014). https://doi.org/10.1016/j.mspro.2014.07.234

    Article  Google Scholar 

  78. S. Zidan, N. Silikas, A. Alhotan, J. Haider, J. Yates, Materials (2019). https://doi.org/10.3390/ma12081344

    Article  Google Scholar 

  79. F. Wesley, F.V. Ferreira, E.V. Ferreira, L. de Simone Cividanes, A. Reis Coutinho, G. Patrocínio, J. Aerosp. Technol. Manag. (2015). https://doi.org/10.5028/jatm.v7i3.485

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Universidad Michoacana de San Nicolás de Hidalgo/Morelia, Centro de Investigación en Micro y Nanotecnología/Universidad Veracruzana, Universidad Nacional Autónoma de México/Unidad Morelia, Tecnológico Nacional de México/Instituto Tecnológico de Morelia, UAM/Iztapalapa, and CONACYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Domratcheva-Lvova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambriz-Torres, J.M., Gutiérrez-García, C.J., García-Ruiz, D.L. et al. Electrical conductivity and Vickers microhardness of composites synthesized from multiwalled carbon nanotubes and carbon spheres with poly(methyl methacrylate): a comparative study. J Mater Sci: Mater Electron 31, 7411–7422 (2020). https://doi.org/10.1007/s10854-020-02868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02868-z

Navigation