Skip to main content

Advertisement

Log in

Enhanced ferroelectric properties of \(\hbox {BaTiO}_3\) films via rapid thermal processing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-crystal \(\hbox {BaTiO}_3\) (BTO) films were prepared by pulsed laser deposition (PLD) on (100) \(\hbox {SrRuO}_3\)(SRO) buffered \(\hbox {SrTiO}_3\)(STO) substrates, which were treated by rapid thermal processing (RTP) in the temperature range of 600–750 \(^\circ {\hbox {C}}\). The XRD, Ferroelectric test system, Hall effect Test Station and current–voltage (I–V) characteristics were used to study microstructure and electrical properties. The results show that the RTP temperature can affect the microstructure of films, the contact of the interfaces and ferroelectric properties. The films exhibit small leakage current, resistance, barrier height, and better ferroelectric properties treated by RTP at \(650 \,^\circ {\hbox {C}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Li, R. Yu, H. Zhou, Z. Cheng, X. Wang, L. Li, J. Zhu, Direct observation of thickness dependence of ferroelectricity in freestanding BaTiO3 thin film. J. Am. Ceram. Soc. 98(9), 2710–2712 (2015)

    Article  CAS  Google Scholar 

  2. Q. Zhang, X. Xia, J. Wang, Y. Su, Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films. Int. J. Solids Struct. 144, 32–45 (2018)

    Article  CAS  Google Scholar 

  3. A. Chen, F. Khatkhatay, W. Zhang, C. Jacob, L. Jiao, H. Wang, Strong oxygen pressure dependence of ferroelectricity in BaTiO3/SrRuO3/SrTiO3 epitaxial heterostructures. J. Appl. Phys. 114(12), 124101 (2013)

    Article  Google Scholar 

  4. Y.J. Shin, L. Wang, Y. Kim, Oxygen partial pressure during pulsed laser deposition: deterministic role on thermodynamic stability of atomic termination sequence at SrRuO3/BaTiO3 interface. ACS Appl. Mater. Interfaces 9(32), 27305–27312 (2017)

    Article  CAS  Google Scholar 

  5. P.-C. Shen, W.-C. Ho, M.-Y. Tsai, Y.-M. Hsin, Post-annealing on the ohmic contact and gate recess simultaneously in AlGaN/GaN MIS-HEMT. In: Meeting Abstracts, no. 31, The Electrochemical Society, pp. 1345–1345 (2019)

  6. K.-H. Chen, C.-C. Diao, C.-F. Yang, B.-X. Wang, Electrical characteristics of Bi4Ti3O12 ferroelectric thin films annealed under different temperature for applications in nonvolatile memory devices. Ferroelectrics 385(1), 646–53 (2009)

    Article  Google Scholar 

  7. B. Pandey, T. Bhat, B. Roul, K. Nanda, S. Krupanidhi, BtO/GaN heterostructure based on Schottky junction for high-temperature selective ultra-violet photo detection. J. Phys. D 51(4), 045104 (2018)

    Article  Google Scholar 

  8. C.-W. Nan, M. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 1 (2008)

    Article  Google Scholar 

  9. C. Deng, Y. Zhang, J. Ma, Y. Lin, C.-W. Nan, Magnetic-electric properties of epitaxial multiferroic NiFe2O4–BaTiO3 heterostructure. J. Appl. Phys. 102(7), 074114 (2007)

    Article  Google Scholar 

  10. C. Deng, Y. Zhang, J. Ma, Y. Lin, C.-W. Nan, Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films. Acta Mater. 56(3), 405–412 (2008)

    Article  CAS  Google Scholar 

  11. W. Lee, C.H. An, S. Yoo, W. Jeon, M.J. Chung, S.H. Kim, C.S. Hwang, Electrical properties of ZrO2/Al2O3/Zro2-based capacitors with TiN, Ru, and TiN/Ru top electrode materials. Phys. Status Solid. 12(10), 1800356 (2018)

    Google Scholar 

  12. E. Venkata Ramana, S. Yang, R. Jung, M. Jung, B. Lee, C. Jung, Ferroelectric and magnetic properties of Fe-doped BaTiO3 thin films grown by the pulsed laser deposition. J. Appl. Phys. 113(18), 187219 (2013)

    Article  Google Scholar 

  13. J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. S ánchez, Tailoring lattice strain and ferroelectric polarization of epitaxial BaTiO3 thin films on si (001). Sci. Rep. 8(1), 495 (2018)

    Article  Google Scholar 

  14. B. Dudem, L.K. Bharat, H. Patnam, A.R. Mule, J.S. Yu, Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO3 composite films: a self-powered utility system for portable electronics. J. Mater. Chem. A 6(33), 16101–16110 (2018)

    Article  CAS  Google Scholar 

  15. M. Welke, P. Huth, K. Dabelow, M. Gorgoi, K. Schindler, A. Chassé, R. Denecke, Energy shifts in photoemission lines during the tetragonal-to cubic-phase transition in BaTiO3 single crystals and systems with CoFe2O4 and NiFe2O4 overlayers. J. Phys. Condens. Matter 30(20), 205401 (2018)

    Article  CAS  Google Scholar 

  16. B. Wang, Y. Ma, B. Na, R. Lv, H. Liu, W. Li, H. Zhou, Enhanced dielectric thermal stability and permittivity of flexible composite films based on BaTiO3 nanoparticles highly filled PVDF/PAN blend nanofibrous membranes. Polym. Compos. 39(S3), E1841–E1848 (2018)

    Article  CAS  Google Scholar 

  17. G. Panomsuwan, H. Manuspiya, A comparative study of dielectric and ferroelectric properties of sol–gel-derived BaTiO3 bulk ceramics with fine and coarse grains. Appl. Phys. A 124(10), 713 (2018)

    Article  Google Scholar 

  18. A. Aidoud, T. Maroutian, S. Matzen, G. Agnus, B. Amrani, K. Driss-Khodja, P. Aubert, P. Lecoeur, Tuning the growth and strain relaxation of ferroelectric BaTiO3 thin films on SrRuO3 electrode: influence on electrical properties. Eur. Phys. J. Appl. Phys. 80(3), 30303 (2017)

    Article  Google Scholar 

  19. M. Zhang, C. Deng, Fractal simulation of thin film nucleation growth process using a diffusion-limited aggregation model. Mod. Phys. Lett. B 32(33), 1850408 (2018)

    Article  CAS  Google Scholar 

  20. M. Zhang, C. Deng, Orientation and electrode configuration dependence on ferroelectric, dielectric properties of BaTiO3 thin films, Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.07.309

    Article  CAS  Google Scholar 

  21. D. Fu, K. Suzuki, K. Kato, Frequency dependence of polarization hysteresis loop in CaBi4Ti4O14 ferroelectric thin films. Integr. Ferroelectr. 61(1), 19–23 (2004)

    Article  CAS  Google Scholar 

  22. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Leakage mechanisms in \(\text{ BiFeO }_3\) thin films. Appl. Phys. Lett. 90(7), 072902 (2007)

    Article  Google Scholar 

  23. H.L. Skriver, N. Rosengaard, Surface energy and work function of elemental metals. Phys. Rev. B 46(11), 7157 (1992)

    Article  CAS  Google Scholar 

  24. W. Sun, Z. Zhou, J. Luo, K. Wang, J.-F. Li, Leakage current characteristics and sm/ti doping effect in BiFeO3 thin films on silicon wafers. J. Appl. Phys. 121(6), 064101 (2017)

    Article  Google Scholar 

  25. A. James, A. Kumar, V .B. Prasad, S. Kamat, V. Singh, P. Ghoshal, A. Pandey, Tunability, ferroelectric and leakage studies on pulsed laser ablated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 thin films. Mater. Chem. Phys. 211, 295–301 (2018)

    Article  CAS  Google Scholar 

  26. X. Jing, W. Xu, C. Yang, Tuning electrical conductivity, charge transport, and ferroelectricity in epitaxial BaTiO3 films by Nb-doping. Appl. Phys. Lett. 110(18), 182903 (2017)

    Article  Google Scholar 

  27. R. Pan, T. Zhang, J. Wang, Z. Ma, J. Wang, D. Wang, Rectifying behavior and transport mechanisms of currents in Pt/BaTiO3/Nb: SrTiO3 structure. J. Alloys Compd. 519, 140–143 (2012)

    Article  CAS  Google Scholar 

  28. F. Liu, I. Fina, D. Gutiérrez, G. Radaelli, R. Bertacco, J. Fontcuberta, Selecting steady and transient photocurrent response in BaTiO3 films. Adv. Electron. Mater. 1(9), 1500171 (2015)

    Article  Google Scholar 

  29. Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Approaching the Schottky–Mott limit in van der waals metal–semiconductor junctions. Nature 557(7707), 696 (2018)

    Article  CAS  Google Scholar 

  30. E. Arveux, Surface and interface properties of BaTiO3 ferroelectric thin films studied by in-situ photoemission spectroscopy, Ph.D. thesis (2009)

  31. J. Goniakowski, F. Finocchi, C. Noguera, Polarity of oxide surfaces and nanostructures. Rep. Progress Phys. 71(1), 016501 (2007)

    Article  Google Scholar 

  32. Y. Sun, X. Shen, J. Wang, Zhao, Thermal annealing behaviour of Ni/Au on N-GaN Schottky contacts. J. Phys. D 35(20), 2648 (2002)

    Article  CAS  Google Scholar 

  33. F. Chen, A. Klein, Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys. Rev. B 86(9), 094105 (2012)

    Article  Google Scholar 

  34. Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu, Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun. 8, 15217 (2017)

    Article  CAS  Google Scholar 

  35. V. Aubry, F. Meyer, Schottky diodes with high series resistance: limitations of forward i–v methods. J. Appl. Phys. 76(12), 7973–7984 (1994)

    Article  CAS  Google Scholar 

  36. N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, New York, 1940)

  37. M. A. Lampert, P. Mark, Current injection in solids. Semicond. Semimet. 6, 1–96 (1970)

  38. S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley, New York, 2006)

    Book  Google Scholar 

  39. P. Singh, P. Rout, M. Singh, R. Rakshit, A. Dogra, Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions. J. Appl. Phys. 118(11), 114103 (2015)

    Article  Google Scholar 

  40. M. Mayimele, J.P.J. van Rensburg, F. Auret, M. Diale, Analysis of temperature-dependant current-voltage characteristics and extraction of series resistance in pd/zno Schottky barrier diodes. Physica B: Condensed Matter 480, 58–62 (2016)

    Article  CAS  Google Scholar 

  41. D. Korucu, T. Mammadov, Temperature-dependent current-conduction mechanisms in au/n-inp Schottky barrier diodes (sbds). Journal of Optoelectronics and Advanced Materials 14(1), 41 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

Generous financial support from National Natural Science Foundation of China (Grant Nos. 51462003, 51762010) and the Science Research Plan Funds of Guizhou province of China (Qian Ke He Ren Cai [2015]4006) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyong Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Deng, C. Enhanced ferroelectric properties of \(\hbox {BaTiO}_3\) films via rapid thermal processing. J Mater Sci: Mater Electron 31, 3130–3136 (2020). https://doi.org/10.1007/s10854-020-02859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02859-0

Navigation