Skip to main content

Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT–KNNG composite thin films

Abstract

Composite thin films of 1–x [Bi0.5Na0.5TiO3] – x [K0.5Na0.5NbO3 + 1 wt% Gd2O3] (BNT–KNNG); (x = 0.01) have been deposited at various O2 pressures from 0.1 to 10 Pa by pulsed laser deposition, and their crystal structure, surface morphology, optical, dielectric, and ferroelectric properties were investigated. X-ray diffraction analysis of thin films deposited at 0.1 Pa revealed a single phase of BNT–KNNG and further (> 0.1 Pa), film crystallinity gradually increased with a rise in O2 pressure. The improvement in the refractive index and a reduction in optical bandgap are observed with O2 pressure and are estimated to be 2.28–2.42 and 4.08–3.65 eV, respectively. The third-order nonlinear optical coefficients estimated using the Z-scan technique are found to be enhanced with O2 pressure. The film deposited at 10 Pa exhibited a higher nonlinear refractive index (n2 = 6.188 × 10− 6 cm2/W) and a strong absorption coefficient (β = 1.043 cm/W). The temperature-dependent dielectric response displayed two structural phase transitions from rhombohedral to tetragonal phase at 165 oC and tetragonal to cubic phase at 298 oC. The enhanced dielectric (εr = 411, tanδ = 0.156 @ 1 kHz), Microwave dielectric (εr = 317 and tanδ = 0.0074 @ 10 GHz), and ferroelectric (Pr = 25.31 µC/cm2, EC = 42.62 kV/cm @ 1 kHz) properties with low leakage current are observed for the film deposited at 10 Pa which followed a space charge limited conduction behavior. The obtained microwave and nonlinear optical properties of BNT–KNNG composite films are suitable for tunable microwave and optical photonic device applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, MRS Bull. 34, 658 (2009)

    CAS  Google Scholar 

  2. 2.

    M.-A. Dubois, P. Muralt, Appl. Phys. Lett. 74, 3032 (1999)

    CAS  Google Scholar 

  3. 3.

    F. Levassort, P. Tran-Huu-Hue, E. Ringaard, M. Lethiecq, J. Eur. Ceram. Soc. 21, 1361 (2001)

    CAS  Google Scholar 

  4. 4.

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 51606 (2006)

    Google Scholar 

  5. 5.

    N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sens. Actuators, A  105, 162 (2003)  

  6. 6.

    N. Ma, B.-P. Zhang, W.-G. Yang, D. Guo, J. Eur. Ceram. Soc. 32, 1059 (2012)

    CAS  Google Scholar 

  7. 7.

    K. Sandeep, J.Pundareekam Goud, K.C. James Raju, Appl. Phys. Lett. 111, 12901 (2017)

    Google Scholar 

  8. 8.

    L. Dong, D.S. Stone, R.S. Lakes, J. Appl. Phys. 111, 84107 (2012)

    Google Scholar 

  9. 9.

    P. Mahesh, S. Thota, D. Pamu, IEEE Trans. Dielectr. Electr. Insul. 22, 3668 (2015)

    CAS  Google Scholar 

  10. 10.

    G.A. Smolenskii, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  11. 11.

    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Google Scholar 

  12. 12.

    S. Pattipaka, A.R. James, P. Dobbidi, J. Electron. Mater. 47, 3876 (2018)

    CAS  Google Scholar 

  13. 13.

    S. Pattipaka, A.R. James, P. Dobbidi, J. Alloys Compd. 765, 1195 (2018)

    CAS  Google Scholar 

  14. 14.

    D.H.A. Blank, M. Dekkers, G. Rijnders, J. Phys. D Appl. Phys. 47, 34006 (2013)

    Google Scholar 

  15. 15.

    T. Zhang, C. Jia, Y. Bai, W. Zhang, in Adv. Mater. Res. (Trans Tech Publications Ltd, 2013), pp. 340–348

  16. 16.

    W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, L. Gao, J. Phys. D Appl. Phys. 40, 1206 (2007)

    CAS  Google Scholar 

  17. 17.

    T. Ning, C. Chen, C. Wang, Y. Zhou, D. Zhang, H. Ming, G. Yang, J. Appl. Phys. 109, 13101 (2011)

    Google Scholar 

  18. 18.

    H. Chen, B. Yang, M. Zhang, F. Wang, K. Cheah, W. Cao, Thin Solid Films 518, 5585 (2010)

    CAS  Google Scholar 

  19. 19.

    J. Zhang, K.L. Yao, Z.L. Liu, G.Y. Gao, Z.Y. Sun, S.W. Fan, Phys. Chem. Chem. Phys. 12, 9197 (2010)

    CAS  Google Scholar 

  20. 20.

    Y.H. Wang, B. Gu, G.D. Xu, Y.Y. Zhu, Appl. Phys. Lett. 84, 1686 (2004)

    CAS  Google Scholar 

  21. 21.

    A.S. Daryapurkar, J.T. Kolte, P. Gopalan, Thin Solid Films 579, 44 (2015)

    CAS  Google Scholar 

  22. 22.

    A.L. Patterson, Phys. Rev. 56, 978 (1939)

    CAS  Google Scholar 

  23. 23.

    Z.G. Zhang, F. Zhou, X.Q. Wei, M. Liu, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang, B.Y. Man, Phys. E Low-Dimensional Syst. Nanostructures 39, 253 (2007)

    CAS  Google Scholar 

  24. 24.

    Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang, W.H. Han, S.Z. Cao, L.C. Zhao, Surf. Coatings Technol. 201, 5344 (2007)

    CAS  Google Scholar 

  25. 25.

    D. Yang, L. Xue, Thin Solid Films 494, 28 (2006)

    CAS  Google Scholar 

  26. 26.

    S.J. Wang, L. Lu, M.O. Lai, J.Y.H. Fuh, J. Appl. Phys. 105, 84102 (2009)

    Google Scholar 

  27. 27.

    J. Pundareekam Goud, S. Ramakanth, A. Joseph, K. Sandeep, G. Lakshminarayana Rao, and K. C. James Raju, Thin Solid Films 626, 126 (2017)

    CAS  Google Scholar 

  28. 28.

    R. Swanepoel, J. Phys. E. 16, 1214 (1983)

    CAS  Google Scholar 

  29. 29.

    D. Dorranian, L. Dejam, G. Mosayebian, J. Theor. Appl. Phys. 6, 13 (2012)

    Google Scholar 

  30. 30.

    J. Tauc, Opt. Prop. Solids 1972, 277 (1972)

    Google Scholar 

  31. 31.

    T.K. Oanh Vu, D.U. Lee, E.K. Kim, J. Alloys Compd. 806, 874 (2019)

    CAS  Google Scholar 

  32. 32.

    S. Pattipaka, A. Joseph, G.P. Bharti, K.C.J. Raju, A. Khare, D. Pamu, Appl. Surf. Sci. 488, 391 (2019)

    CAS  Google Scholar 

  33. 33.

    G.P. Bharti, A. Khare, Opt. Mater. Express 6, 2063 (2016)

    CAS  Google Scholar 

  34. 34.

    E.W. Van Stryland, M. Sheik-Bahae, A.A. Said, D.J. Hagan, Prog. Cryst. Growth Charact. Mater. 27, 279 (1993)

    Google Scholar 

  35. 35.

    M. Peddigari, S. Pattipaka, G.P. Bharti, A. Khare, P. Dobbidi, Opt. Mater. (Amst). 58, 9 (2016)

    CAS  Google Scholar 

  36. 36.

    G.P. Bharti, P.P. Dey, A. Khare, Mater. Chem. Phys. 216, 206 (2018)

    CAS  Google Scholar 

  37. 37.

    P. Yang, L. Zhang, Y. Zhao, J. Gong, Y. Tang, Int. J. Appl. Ceram. Technol. 12, 399 (2015)

    CAS  Google Scholar 

  38. 38.

    W. Robert, Boyd, Nonlinear optics, 2nd edn. (Elsevier, Academic Press, 2011), pp. 238

  39. 39.

    J. Krupka, J. Eur. Ceram. Soc. 23, 2607 (2003)

    CAS  Google Scholar 

  40. 40.

    J. Krupka, A.P. Gregory, O.C. Rochard, R.N. Clarke, B. Riddle, J. Baker-Jarvis, J. Eur. Ceram. Soc. 21, 2673 (2001)

    CAS  Google Scholar 

  41. 41.

    M. Peddigari, V. Patel, G.P. Bharti, A. Khare, D. Pamu, J. Am. Ceram. Soc. 100, 3013 (2017)

    CAS  Google Scholar 

  42. 42.

    K.V. Saravanan, K. Sudheendran, M.G. Krishna, K.C.J. Raju, Ferroelectrics 356, 158 (2007)

    CAS  Google Scholar 

  43. 43.

    F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, K.J. Hemker, J. Appl. Phys. 89, 1336 (2001)

    CAS  Google Scholar 

  44. 44.

    Y.Y. Ma, R.H. Bube, J. Electrochem. Soc. 124, 1430 (1977)

    CAS  Google Scholar 

  45. 45.

    S.H. Hu, G.J. Hu, X.J. Meng, G.S. Wang, J.L. Sun, S.L. Guo, J.H. Chu, N. Dai, J. Cryst. Growth 260, 109 (2004)

    CAS  Google Scholar 

  46. 46.

    W. Cai, C. Fu, J. Gao, H. Chen, J. Alloys Compd. 480, 870 (2009)

    CAS  Google Scholar 

  47. 47.

    H. Orihara, S. Hashimoto, Y. Ishibashi, J. Phys. Soc. Japan 63, 1031 (1994)

    CAS  Google Scholar 

  48. 48.

    K.-S. Yang, M.-J. Choi, J.-S. Choi, J.-H. Eom, B.-J. Park, S.-Y. Lee, S.-G. Yoon, Sensors Actuators A Phys. 243, 117 (2016)

    CAS  Google Scholar 

  49. 49.

    H. Borkar, V. Rao, M. Tomar, V. Gupta, J.F. Scott, A. Kumar, RSC Adv. 7, 12842 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by DAE BRNS [37(1)/14/33/2015/BRNS], India. The authors are grateful to Central Instruments Facility (CIF) and Centre for Nanotechnology, Indian Institute of Technology Guwahati, India for providing experimental facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Pamu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pattipaka, S., Pundareekam Goud, J., Bharti, G.P. et al. Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT–KNNG composite thin films. J Mater Sci: Mater Electron 31, 2986–2996 (2020). https://doi.org/10.1007/s10854-019-02842-4

Download citation

Keywords

  • Pulsed laser deposition
  • Microwave dielectric properties
  • Ferroelectric properties
  • Linear and nonlinear optical properties