Skip to main content

Optical, structural and electrical properties of ZnO thin films doped with Mn

Abstract

Manganese-doped zinc oxide (Mn-doped ZnO) thin films were synthesized on soda lime glass substrates using the spray pyrolysis technique at substrates temperatures of 400, 450 and 500 °C. Compositional, optical, structural, morphological and electrical properties were studied with Rutherford Backscattering Spectrometry (RBS), Ultraviolet and Visible Spectroscopy (UVS), X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) and the Four Point method, respectively. Mn-doped ZnO films show changes in transmittance and energy band gap when substrate temperature is increased. In the same way, electrical resistivity measurements show changes with temperature, getting a minimum value at 450 °C. The results were also compared with undoped ZnO thin films. They show that constant lattices, crystallite size and resistivity increase with Mn doping. These variations are the result of the substitution of Zn by Mn ions during the incorporation of Mn ions in the ZnO lattice. On the other hand, energy band gap values decrease when the samples were doped with Mn, due to the sd and pd exchange interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 47 (1998). https://doi.org/10.1063/1.367375

    Article  Google Scholar 

  2. 2.

    A. Tsukazaki, S. Fuke, Y. Sewaga, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005). https://doi.org/10.1038/nmat1284

    CAS  Article  Google Scholar 

  3. 3.

    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230 (1997). https://doi.org/10.1063/1.118824

    CAS  Article  Google Scholar 

  4. 4.

    S. Benramache, A. Arif, O. Belahssen, A. Guettaf, Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostr. Chem. 3, 80 (2013). https://doi.org/10.1186/2193-8865-3-80

    Article  Google Scholar 

  5. 5.

    G.G. Rusu, P. Gorley, C. Baban, A.P. Rambu, M. Rusu, Preparation and characterization of Mn-doped ZnO thin films. J. Optoelectron. Adv. Mater. 12, 895 (2010). https://doi.org/10.1134/S1063783418050050

    CAS  Article  Google Scholar 

  6. 6.

    R. Baghdad, B. Kharroubi, A. Abdiche, M. Vousmaha, M.A. Bezzerrouk, A. Zeinert, M. El Marssi, K. Zellama, Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method. Superlatt. Microstr. 52, 711 (2012). https://doi.org/10.1016/j.spmi.2012.06.023

    CAS  Article  Google Scholar 

  7. 7.

    Y. Aoun, B. Benhaoua, S. Benramache, A study the aluminum doped zinc oxide thin films. J. Nano Electron. Phys. 7, 3006 (2015). https://doi.org/10.1016/j.msec.2007.10.006

    CAS  Article  Google Scholar 

  8. 8.

    R. Wen, L. Wang, X. Wang, G.-H. Yue, Y. Chen, D.-L. Peng, Influence of substrate temperature on mechanical, optical and electrical properties of ZnO: Al films. J. Alloys Compd. 508, 370 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    A.U. Ubale, V.P. Deshpande, Effect of manganese inclusion on structural, optical ane electrical properties of ZnO thin films. J. Alloys Compd. 500, 138 (2010). https://doi.org/10.1016/j.jallcom.2010.04.004

    CAS  Article  Google Scholar 

  10. 10.

    W.A. Bryant, The fundamental of chemical vapor deposition. J. Mater. Sci. 12, 1285 (1977). https://doi.org/10.1016/j.jallcom.2010.08.034

    CAS  Article  Google Scholar 

  11. 11.

    M. Krunks, E. Mellikov, Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films 270, 33 (1995). https://doi.org/10.1238/Physica.Topical.079a00209

    CAS  Article  Google Scholar 

  12. 12.

    D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103 (2005). https://doi.org/10.1007/s10832-005-0870-x

    CAS  Article  Google Scholar 

  13. 13.

    M. Mayer, SIMNRA User’s Guide, Version 6.04, Max Planck-Institute für Plasmaphysik, Garching.

  14. 14.

    W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering spectrometry (Academic Press, New York, 1978)

    Book  Google Scholar 

  15. 15.

    A. Zaier, F. Oum Al Az, F. Lakfif, A. Kabir, S. Boudjadar, M.S. Aida, Effects of the substrate temperature and solution molarity on the structural opto-electric properties of ZnO thin films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 12, 207 (2009). https://doi.org/10.1016/j.mssp.2009.12.002

    CAS  Article  Google Scholar 

  16. 16.

    Powder Diffraction File 36–1451 for hexagonal ZnO, JCPDS-International center for Diffraction data (1997).

  17. 17.

    K. Mahmood, S. Bashir, M. Kaleeq-Ur-Rahman, N. Farid, M. Akram, A. Hayat, A. Faizan-Ul-Haq, Effects of substrate temperature on structural, optical and surface morphology properties of pulsed laser deposited ZnO thin films. Surf. Rev. Lett. 20, 1350032 (2013). https://doi.org/10.1142/S0218625X13500327

    CAS  Article  Google Scholar 

  18. 18.

    R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol. Energy Mater. Sol. Cells 90, 2356 (2006). https://doi.org/10.1016/j.solmat.2006.03.008

    CAS  Article  Google Scholar 

  19. 19.

    G.A. Velázquez-Nevárez, J.R. Vargas-García, J. Aguilar-Hernández, O.E. Vega-Becerra, F. Chen, Q. Shen, L. Zhang, Optical and electrical properties of (002)-oriented ZnO films prepared on amorphous substrates by sol–gel spin-coating. Mater. Res. 19, 113 (2016). https://doi.org/10.1590/1980-5373-mr-2016-0808

    CAS  Article  Google Scholar 

  20. 20.

    D. Acosta, A. López-Suárez, C. Magaña, F. Hernández, Structural, electrical and optical properties of ZnO thin films produced by chemical spray using ethanol in different amounts of the sprayed solution. Thin Solid Films 653, 309 (2018). https://doi.org/10.1016/j.tsf.2018.03.031

    CAS  Article  Google Scholar 

  21. 21.

    L. Motevalizadeh, B.G. Shohany, M.E. Abrishami, Effects of Mn doping on electrical properties of ZnO thin films. Mod. Phys. Lett. B 4, 1650024 (2016). https://doi.org/10.1142/S021798491650024X

    CAS  Article  Google Scholar 

  22. 22.

    S. Yang, Y. Zhang, Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method. J. Magn. Magn. Mater. 334, 52 (2013). https://doi.org/10.1016/j.jmmm.2013.01.026

    CAS  Article  Google Scholar 

  23. 23.

    S.A. Ahmed, Structural, optical and magnetic properties of Mn-doped ZnO samples. Results Phys. 7, 604 (2017). https://doi.org/10.1016/j.rinp.2017.01.018

    Article  Google Scholar 

  24. 24.

    A. Rahal, S. Benramache, B. Benhaoua, Substrate temperature effect on optical property of ZnO thin films. Eng. J. 18, 81 (2014). https://doi.org/10.4186/ej.2014.18.2.81

    Article  Google Scholar 

  25. 25.

    V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, Sung-Hwan Han, Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96, 326 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.045

    CAS  Article  Google Scholar 

  26. 26.

    K.J. Kim, Y.R. Park, Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxOZn1-xCoxO alloys. Appl. Phys. Lett. 81, 1420 (2002). https://doi.org/10.1063/1.1501765

    CAS  Article  Google Scholar 

  27. 27.

    B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solid B 252, 1700 (2015). https://doi.org/10.1002/pssb.201552007

    CAS  Article  Google Scholar 

  28. 28.

    L. Bentes, R. Ayouchi, C. Santos, R. Schwarz, P. Sanguino, O. Conde, M. Peres, T. Monteiro, O. Teodoro, ZnO films grown by laser ablation with and without oxygen CVD. Superlatt. Microstr. 42, 152 (2007). https://doi.org/10.1016/j.spmi.2007.04.049

    CAS  Article  Google Scholar 

  29. 29.

    J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, X.D. Gao, Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD). J. Cryst. Growth 276, 507 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.407

    CAS  Article  Google Scholar 

  30. 30.

    F.K. Shan, G.X. Liu, W.J. Lee, I.S. Kim, B.C. Shin, Y.C. Kim, Transparent conductive ZnO thin films on glass substrates deposited by pulsed laser deposition. J. Cryst. Growth 277, 284 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.016

    CAS  Article  Google Scholar 

  31. 31.

    S. Benramache, O. Belahssen, A. Arif, A. Guettaf, A correlation for crystallite size of undoped ZnO thin film with the band gap energy-precursor molarity-substrate temperature. Optik 125, 1303 (2014). https://doi.org/10.1016/j.ijleo.2013.08.015

    CAS  Article  Google Scholar 

  32. 32.

    A. Hafdallah, A. Ferdi, M.S. Aida, N. Attaf, A. Amara, Effect of substrate temperature studies on spray pyrolysis deposited ZnO thin films. Int. J. Adv. Res. 3, 240 (2015). https://doi.org/10.1515/msp-2015-0062

    CAS  Article  Google Scholar 

  33. 33.

    Y.R. Lee, A.K. Ramdas, R.L. Aggarwal, Energy gap, excitonic, and "internal" Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors. Phys. Rev. B 38, 10600 (1988). https://doi.org/10.1103/PhysRevB.38.10600

    CAS  Article  Google Scholar 

  34. 34.

    S. Modal, S.R. Bhattacharyya, P. Mitra, Preparation of manganese-doped ZnO thin films and their characterization. Bull. Mater. Sci. 36, 223 (2013). https://doi.org/10.1007/s12034-013-0462-3

    CAS  Article  Google Scholar 

  35. 35.

    S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6 (2008). https://doi.org/10.1016/j.mssp.2008.04.005

    CAS  Article  Google Scholar 

  36. 36.

    T.K. Roy, D. Sanyal, D. Bhowmick, A. Chakrabarti, Temperature dependent resistivity study on zinc oxide and the role of defects. Mater. Sci. Semicond. Process. 16, 332 (2013). https://doi.org/10.1016/j.mssp.2012.09.018

    CAS  Article  Google Scholar 

  37. 37.

    Y.-L. Lee, S.-F. Chen, C.-L. Ho, M.-C. Wu, Effects of oxygen plasma post-treatment on Ga-doped ZnO films grown by thermal-mode ALD. ECS. J. Solid State Sci. Technol. 2, 316 (2013). https://doi.org/10.1149/2.024307jss

    CAS  Article  Google Scholar 

  38. 38.

    S. Benramache, B. Benhaoua, F. Chabane, Effect of substrate temperature on the stability of transparent conducting cobalt doped ZnO thin films. J. Semicond. (2012). https://doi.org/10.1088/1674-4926/33/9/093001

    Article  Google Scholar 

  39. 39.

    L. Castañeda, A. Maldonado, A. Escobedo-Morales, M. Avendaño-Alejo, H. Gómez, J. Vega-Pérez, M. de la L. Olvera, Indium doped zinc oxide thin films deposited by ultrasonic spray pyrolysis technique: Effect of the substrate temperature on the physical properties. Mater. Sci. Semicond. Process. 14, 114 (2011). https://doi.org/10.1016/j.mssp.2011.01.013

    CAS  Article  Google Scholar 

  40. 40.

    A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim, Physical properties of ZnO thin films deposited by spray pyrolysis technique. Appl. Surf. Sci. 252, 7844 (2006). https://doi.org/10.1016/j.apsusc.2005.09.048

    CAS  Article  Google Scholar 

  41. 41.

    N. Najfi, Seyed Mohammad Rozait, Resistivity reduction of nanostructured undoped zinc oxide thin films for Ag/ZnO bilayers using APCVD and sputtering techniques. Mater. Res. 21, e20170933 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0933

    CAS  Article  Google Scholar 

  42. 42.

    G. Muruganantham, K. Ravichandran, K. Saravanakumar, K. Swaminathan, N. Jabena Begum, B. Sakthivel, Effect of solvent volume on the physical properties of sprayed fluorine-doped zinc oxide thin films. Cryst. Res. Technol. 47, 429 (2012). https://doi.org/10.1002/crat.201100527

    CAS  Article  Google Scholar 

  43. 43.

    A. López-Suárez, D. Acosta, C. Magaña, F. Hernández, Effect of substrate temperature and sprayed methanol on nanostructure, optical and electrical properties of ZnO films. Adv. Sci. Eng. Med. 10, 105 (2018). https://doi.org/10.1166/asem.2018.2181

    CAS  Article  Google Scholar 

  44. 44.

    J. Han, P.Q. Mantas, A.M.R. Senos, Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J. Eur. Ceram. Soc. 22, 49 (2002). https://doi.org/10.1016/S0955-2219

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the technical assistance of Roberto Hernández, Diego Quiterio, Francisco Javier Jaimes, Mauricio Escobar and Antonio Morales. This work was supported by UNAM DGAPA-PAPIIT under Grants IN 101-219 and IN 102-419.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandra López-Suárez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Suárez, A., Acosta, D., Magaña, C. et al. Optical, structural and electrical properties of ZnO thin films doped with Mn. J Mater Sci: Mater Electron 31, 7389–7397 (2020). https://doi.org/10.1007/s10854-019-02830-8

Download citation