Skip to main content

Advertisement

Log in

Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ce doped MgO nanoparticles with various doping concentrations of cerium ion were prepared by the sol–gel method. Both pure and Ce doped MgO nanoparticles were characterized by powder X-ray diffraction (XRD), Scanning electron microscope (SEM), Field emission scanning electron microscope, Energy-dispersive X-ray spectroscopy, UV–Vis diffuse reflectance spectroscopy, and Photoluminescence spectra analysis. XRD and SEM results suggest that both pristine and Ce doped MgO nanoparticles were in face centered cubic structure with individual spherical shaped nanoparticles with average particles sizes in the range of 20–30 nm. The band gap energy of pure MgO was significantly reduced from 3.81 eV to 3.22 eV. The Ce doped MgO catalyst showed outstanding photocatalytic degradation activity such as high efficiency (95%) and high stability (only loss 3.5%) towards phenol dye under visible light irradiation. The improved photocatalytic mechanism of MgO by Ce doping is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. S. Mansingh, D.K. Padhi, K.M. Parida, Catal. Sci. Technol. 7, 2772 (2017)

    Article  CAS  Google Scholar 

  3. Y.C. Zhang, Z. Li, L. Zhang, L. Pan, X.W. Zhang, L. Wang, F. Aleem, J.J. Zou, Appl. Catal. B 224, 101 (2018)

    Article  CAS  Google Scholar 

  4. S.R. Pouran, M. Mousavi, A. HabibiYangjeh, J. Mater. Sci. Mater. Electron. 29, 1719 (2018)

    Article  Google Scholar 

  5. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62, 1 (2018)

    Article  CAS  Google Scholar 

  6. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  CAS  Google Scholar 

  7. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)

    Article  CAS  Google Scholar 

  8. S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, K. Kaneko, Sci. Technol. Adv. Mater. 6, 11 (2005)

    Article  CAS  Google Scholar 

  9. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells. 90, 2011 (2006)

    Article  CAS  Google Scholar 

  10. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007)

    Article  CAS  Google Scholar 

  11. S. Suresh, D. Arivuoli, J. Nanomater. Biostrut. 6, 1597 (2011)

    Google Scholar 

  12. V.T. Srisuvetha, S.L. Rayar, G. Shanthi, A. DhayalRaj, Int. J. Curr. Eng. Res 5, 1 (2018)

    Google Scholar 

  13. M. Parthibavarman, M. Karthik, S. Prabhakaran, Vacuum 155, 224 (2018)

    Article  CAS  Google Scholar 

  14. T. Kato, G. Okada, N. Kawaguchi, T. Yanagida, J. Lumin. 192, 316 (2017)

    Article  CAS  Google Scholar 

  15. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730 (2014)

    Article  CAS  Google Scholar 

  16. M. Karthik, M. Parthibavarman, A. Kumaresan, G. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, J. Mater. Sci.: Mater. Electron. 28, 6635 (2017)

    CAS  Google Scholar 

  17. V. Hariharan, S. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, C. Sekar, Talanta 85, 2166 (2011)

    Article  CAS  Google Scholar 

  18. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, J. Optoelectron. Adv. Mater. 12, 1894 (2010)

    CAS  Google Scholar 

  19. B. Chouchene, T.B. Chaabane, L. Balan, E. Girot, K. Mozet, G. Medjahdi, R. Schneider, Beilstein J. Nanotechnol. 7, 1338 (2016)

    Article  CAS  Google Scholar 

  20. Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B. 109, 11204 (2005)

    Article  CAS  Google Scholar 

  21. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, J. Mater. Sci.: Mater. Electron. 29, 2341 (2018)

    CAS  Google Scholar 

  22. M. Parthibavarman, M. Karthik, S. Prabhakaran, J. Clust. Sci. 30, 495 (2019)

    Article  CAS  Google Scholar 

  23. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, J. Clust. Sci. 30, 351 (2019)

    Article  CAS  Google Scholar 

  24. S.P. Chaudhari, A.B. Bodade, P.D. Jolhe, S.P. Meshram, G.N. Chaudhari, Am. J. Mater. Synth. Process. 2, 97 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Srisuvetha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srisuvetha, V.T., Rayar, S.L. & Shanthi, G. Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route. J Mater Sci: Mater Electron 31, 2799–2808 (2020). https://doi.org/10.1007/s10854-019-02823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02823-7

Navigation