Skip to main content
Log in

Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we investigate the effect of crystalline structure and design configuration of photoanode semiconductor on physical properties and electron transport parameters of dye-sensitized solar cells based on niobium pentoxide (Nb2O5) composition. At the first step, the effect of calcination on structural properties of Nb2O5 has been studied. Phase transformation from mixed monoclinic/orthorhombic to pure monoclinic phase has been observed. The performance of cells is then investigated for different designs of photoanode, including pure Nb2O5, pure TiO2 and bilayer structure composed of TiO2/calcined Nb2O5. The highest performance belonged to the cell prepared bilayer photoanode. Bilayer structure facilitated charge extraction which leads to the drastically improvement of photoconversion efficiency. Remarkable increase in JSC is reported comparing to cells without TiO2 layer, from about 0.08 to around 5.7 mA cm−2, leading to conversion efficiency as high as 1.48% in the best cell. Results of dye loading measurement and impedance spectroscopy analysis revealed that this higher photocurrent is attributed to both more injected electrons from dye to photoanode and higher electron lifetime. Furthermore, inhibition of electron back-transfer from the composite layer to the electrolyte as well as low recombination resistance plays critical roles in such dramatically photoconversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. O’Regan, M. Gräzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991)

    Google Scholar 

  2. M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Google Scholar 

  3. N.A. Karim, U. Mehmood, H. Zahid, T. Asif, Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol. Energy 185, 165–188 (2019)

    CAS  Google Scholar 

  4. R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92, 289–301 (2009)

    CAS  Google Scholar 

  5. C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017)

    Google Scholar 

  6. D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Renew. Sustain. Energy Rev. 60, 356–376 (2016)

    CAS  Google Scholar 

  7. R. Milan, G.S. Selopal, M. Epifani, M.M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, ZnO@ SnO2 engineered composite photoanodes for dye sensitized solar cells. Sci. Rep. 5, 14523 (2015)

    CAS  Google Scholar 

  8. T. Chen, Y. Shang, Sh Hao, L. Tian, Y. Hou, Ch. Yang, Electrochim. Acta. 282, 743–749 (2018)

    CAS  Google Scholar 

  9. H. Sun, H. Kurotaki, K. Kanomata, F. Hirose, M.S. White, T. Yoshida, ZnO/TiO2 core–shell photoelectrodes for dye-sensitized solar cells by screen printing and room temperature ALD. Microsyst. Technol. 24, 647–654 (2018)

    CAS  Google Scholar 

  10. A. Pang, X. Sun, H. Ruan, Y. Li, S. Dai, M. Wei, Highly efficient dye-sensitized solar cells composed of TiO2@ SnO2 core–shell microspheres. Nano Energy 5, 82–90 (2014)

    CAS  Google Scholar 

  11. Y. Zhao, X. Zhou, L. Ye, S.C.E. Tsang, Nanostructured Nb2O5 catalysts. Nano Rev. 3, 17631 (2012)

    CAS  Google Scholar 

  12. A. Latini, R. Panetta, Energies 11, 975 (2018)

    Google Scholar 

  13. A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, J. Phys. Chem. C 114, 21795–21800 (2010)

    Google Scholar 

  14. M.H. Habibi, R. Mokhtari, J. Inorg. Organomet. Polym. 22, 158–165 (2012)

    CAS  Google Scholar 

  15. C.L. Ücker, L.T. Gularte, C.D. Fernandes, V. Goetzke, E.C. Moreira, C.W. Raubach, M.L. Moreira, S.S. Cava, Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells. J. Am. Ceram. Soc. 102, 1884–1892 (2016)

    Google Scholar 

  16. A.M. Rabaa, J. Bautista-Ruíza, M.R. Joya, Mater. Res. 19, 1381–1387 (2016)

    Google Scholar 

  17. V. Ojha, K. Kato, M.A. Kabbani, G. Babu, P.M. Ajayan, Nb2O5/reduced graphene oxide nanocomposite anode for high power hybrid supercapacitor applications. Chem. Select. 4, 1098–1102 (2019)

    CAS  Google Scholar 

  18. X. Wang, Q. Li, L. Zhang, Z. Hu, L. Yu, T. Jiang, C. Lu, C. Yan, J. Sun, Z. Liu, Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30, 1800963 (2018)

    Google Scholar 

  19. G. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B.R. Neto, R. Moreno, Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. J. Mater. Res. 32, 3271–3278 (2017)

    CAS  Google Scholar 

  20. R. Rathnasamy, P. Thangasamy, V. Aravindhan, P. Sathyanarayanan, V. Alagan, Facile one-pot solvothermal-assisted synthesis of uniform sphere-like Nb2O5 nanostructures for photocatalytic applications. Res. Chem. Intermed. 45, 3571–3584 (2019)

    CAS  Google Scholar 

  21. D.C. Castro, R.P. Cavalcante, J. Jorge, M.A.U. Martines, L.C.S. Oliveira, G.A. Casagrande, A. Machulek Jr., J. Braz. Chem. Soc. 27, 303–313 (2016)

    CAS  Google Scholar 

  22. M.M. Qadir, Y. Li, A. Biesiekierski, C. Wen, Optimized fabrication and characterization of TiO2–Nb2O5–ZrO2 nanotubes on β-phase TiZr35Nb28 alloy for biomedical applications via the Taguchi method. ACS Biomater. Sci. Eng. 5, 2750–2761 (2019)

    CAS  Google Scholar 

  23. P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, N. Rajendran, Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol. 244, 131–141 (2014)

    CAS  Google Scholar 

  24. M. Kalisz, M. Grobelny, M. Mazur, M. Zdrojek, D. Wojcieszak, M. Świniarski, J. Judek, D. Kaczmarek, Thin Solid Films 589, 356–363 (2012)

    Google Scholar 

  25. Z. Wang, J. Lou, X. Zheng, W.-H. Zhang, Y. Qin, Solution Processed Nb2O5 Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustain. Chem. Eng. 7, 7421–7429 (2019)

    CAS  Google Scholar 

  26. B. Gu, Y. Zhu, H. Lu, W. Tian, L. Li, Sol. Energy 166, 187–194 (2018)

    CAS  Google Scholar 

  27. S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Electrochimica Acta 289, 1–12 (2018)

    CAS  Google Scholar 

  28. S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, J. Colloid Interface Sci. 524, 236–244 (2018)

    CAS  Google Scholar 

  29. S. Suresh, G.E. Unni, C. Ni, R.S. Sreedharan, R.R. Krishnan, M. Satyanarayana, M. Shanmugam, V.P.M. Pillai, Appl. Surf. Sci. 419, 720–732 (2017)

    CAS  Google Scholar 

  30. A. Sacco, M.S.D. Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Cali, C.F. Pirri, Thin Solid Films 574, 38 (2015)

    CAS  Google Scholar 

  31. J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111, 8092 (2007)

    CAS  Google Scholar 

  32. J. Kim, J. Kim, J. Nanosci. Nanotechnol. 11, 7335–7338 (2011)

    CAS  Google Scholar 

  33. Hu Xiaoyan, H. Wang, ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells. Front. Optoelectron. 11, 285–290 (2018)

    Google Scholar 

  34. N.I. Beedri, P.K. Baviskar, V.P. Bhalekar, C.V. Jagtap, A.M. Asiri, S.R. Jadkar, H.M. Pathan, Phys. Status Solidi A 215, 1800236 (2018)

    Google Scholar 

  35. J. Nguu, F. Nyongesa, R. Musembi, B. Aduda, J. Mater. Phys. Chem. 6, 1–8 (2018)

    CAS  Google Scholar 

  36. N.I. Beedri, P.K. Baviskar, A.T. Supekar, S.R. Jadkar, H.M. Pathan, Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell. Int. J. Modern Phys. B 32, 1840046 (2018)

    CAS  Google Scholar 

  37. L. Chu, W. Liu, Yu. Aiai, Z. Qin, R. Hu, H. Shu, Q.-P. Luo, Y. Min, J. Yang, X.A. Li, Sol. Energy 153, 584–589 (2017)

    CAS  Google Scholar 

  38. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008)

    CAS  Google Scholar 

  39. S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Prog. Photovolt: Res. Appl. 15, 603–612 (2007)

    CAS  Google Scholar 

  40. Y. Meng, Y. Lin, Y. Lin, J. Mater. Sci. Mater. Electron. 24, 5117–5121 (2013)

    CAS  Google Scholar 

  41. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO 2 photocatalysts. RSC Adv. 4, 36959 (2014)

    CAS  Google Scholar 

  42. L. Lutterotti, Maud version 2.8, %3chttps://www.ing.unitn.it/maud/%3e (2018)

  43. S.R. Aghdaee, V. Soleimanian, Anisotropic line broadening in nanocrystalline cadmium sulfide prepared by hydrothermal reaction. J. Cryst. Growth 341, 66–71 (2012)

    CAS  Google Scholar 

  44. S.L. Wang, P.G. Li, H.W. Zhu, W.H. Tang, Controllable synthesis and photocatalytic property of uniform CuO/Cu2O composite hollow microspheres. Powder Technol. 230, 48–53 (2012)

    CAS  Google Scholar 

  45. V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C.K. Jayasankar, F. Piccinelli, M. Bettinelli, A. Speghini, Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices. Nanotechnology 21, 175703 (2010)

    CAS  Google Scholar 

  46. S. Sain, S. Patra, S.K. Pradhan, Quickest ever single-step mechanosynthesis of Cd0.5 Zn0.5 S quantum dots: nanostructure and optical characterizations. Mater. Res. Bull. 47, 1062–1072 (2012)

    CAS  Google Scholar 

  47. Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, R. Jose, Sol. Energy 132, 395–404 (2016)

    CAS  Google Scholar 

  48. X. Jin, C. Liu, Xu Jing, Q. Wang, Di Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546–35553 (2014)

    CAS  Google Scholar 

  49. N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Angew. Chem. Int. Ed. 50, 12321–12325 (2011)

    CAS  Google Scholar 

  50. M.S. Akhtar, A facile synthesis of ZnO nanoparticles and its application as photoanode for dye sensitized solar cells. Sci. Adv. Mater. 7, 1137–1142 (2015)

    CAS  Google Scholar 

  51. S.K. Hau, H.-L. Yip, O. Acton, N.S. Baek, H. Maa, A.K.-Y. Jen, Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113–5119 (2008)

    CAS  Google Scholar 

  52. C.M. Proctor, T.-Q. Nguyen, Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106, 083301 (2015)

    Google Scholar 

  53. R.-Y. Yang, H.-Y. Chen, F.-D. Lai, Performance degradation of dye-sensitized solar cells induced by electrolytes. Adv. Mater. Sci. Eng. 902146, 4 (2012). https://doi.org/10.1155/2012/902146

    Article  CAS  Google Scholar 

  54. C.S. Rusche, F.P. Gasparin, E.R. Costa, A. Krenzinger, Sol. Energy 133, 35–43 (2016)

    Google Scholar 

  55. K. Subalakshmi, J. Senthilselvan, Sol. Energy 171, 914–928 (2018)

    CAS  Google Scholar 

  56. G.S. Selopal, N. Memarian, R. Milan, I. Concina, G. Sberveglieri, A. Vomiero, ACS Appl. Mater. Interfaces 6, 11236–11244 (2014)

    CAS  Google Scholar 

  57. X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, X. Chen, Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J. Chem. 40, 6276–6280 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to gratefully acknowledge Dr. Hamid Meghdadi neyshabori from department of electrical engineering (Semnan University) for his fruitful discussion on EIS data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Memarian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memari, M., Memarian, N. Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells. J Mater Sci: Mater Electron 31, 2298–2307 (2020). https://doi.org/10.1007/s10854-019-02762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02762-3

Navigation