Skip to main content
Log in

A rapid preparation of PPECu and plasmonic Ag/PPECu nanocomposites with high performance for photocatalytic hydrogen production

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new and rapid synthetic method toward polymer phenylethnylcopper (PPECu) nanowires is developed. PPECu nanowires have been firstly fabricated through using ascorbic acid instead of methanol as reducing agent. The preparation time of PPECu can be decreased from 48 to 2 h, even at a lower temperature. Ag/PPECu nanocomposites were prepared by the in situ reaction of PPECu and Ag (NH3)+2 ions with different concentrations. Ag/PPECu photocatalysts showed high visible-light H2 production activity, which originated from the combined action of electrons transfer, sacrificing reagent and SPR effect of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

Similar content being viewed by others

References

  1. J. Xie, C. Yang, M. Duan, J. Tang, Y. Wang, H. Wang, J. Courtois, Amorphous NiP as cocatalyst for photocatalytic water splitting. Ceram. Int. 44, 5459–5465 (2018)

    Article  CAS  Google Scholar 

  2. X.-L. Li, X.-J. Wang, J.-Y. Zhu, Y.-P. Li, J. Zhao, F.-T. Li, Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 353, 15–24 (2018)

    Article  CAS  Google Scholar 

  3. N.L. Reddy, V.N. Rao, M.M. Kumari, R.R. Kakarla, P. Ravi, M. Sathish, M. Karthik, S.M. Venkatakrishnan, Nanostructured semiconducting materials for efficient hydrogen generation. Environ. Chem. Lett. 16, 1–32 (2018)

    Article  Google Scholar 

  4. B.-R. Wulan, S.-S. Yi, S.-J. Li, Y.-X. Duan, J.-M. Yan, Q. Jiang, Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl. Catal. B 231, 43–50 (2018)

    Article  CAS  Google Scholar 

  5. M. Liu, P. Xia, L. Zhang, B. Cheng, J. Yu, Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst. ACS Sustain. Chem. Eng. 6, 10472–10480 (2018)

    Article  CAS  Google Scholar 

  6. I. Tamiolakis, D. Liu, F.-X. Xiao, J. Xie, I.T. Papadas, T. Salim, B. Liu, Q. Zhang, S.A. Choulis, G.S. Armatas, Mesoporous implantable Pt/SrTiO3: C, N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transfer. Appl. Catal. B 236, 338–347 (2018)

    Article  CAS  Google Scholar 

  7. J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017)

    Article  CAS  Google Scholar 

  8. Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Cu2(OH)2CO3 clusters: novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Appl. Catal. B 205, 104–111 (2017)

    Article  CAS  Google Scholar 

  9. B.R. Buckley, S.E. Dann, D.P. Harris, H. Heaney, E.C. Stubbs, Alkynylcopper(I) polymers and their use in a mechanistic study of alkyne–azide click reactions. Chem. Commun. 46, 2274–2276 (2010)

    Article  CAS  Google Scholar 

  10. B.R. Buckley, S.E. Dann, H. Heaney, Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne–azide chemistry. Chem. A Eur. J. 16, 6278–6284 (2010)

    Article  CAS  Google Scholar 

  11. Z. Wei, J. Hu, K. Zhu, W. Wei, X. Ma, Y. Zhu, Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Appl. Catal. B 226, 616–623 (2018)

    Article  CAS  Google Scholar 

  12. G.-Y. Zhao, C.-Y. Li, Y. Xu, PPECu/NiFe2O4 as an efficient visible-light-driven difunctional photocatalyst for degradation of PPCPs and hydrogen production. J. Alloys Compd. 780, 534–539 (2019)

    Article  CAS  Google Scholar 

  13. Y. Lu, D. Wang, P. Yang, Y. Du, C. Lu, Coupling ZnxCd1-xS nanoparticles with graphene-like MoS2: superior interfacial contact, low overpotential and enhanced photocatalytic activity under visible-light irradiation. Catal. Sci. Technol. 4, 2650–2657 (2014)

    Article  CAS  Google Scholar 

  14. J. Yang, H. Yan, X. Wang, F. Wen, Z. Wang, D. Fan, J. Shi, C. Li, Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal. 290, 151–157 (2012)

    Article  CAS  Google Scholar 

  15. A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal. 3, 79–85 (2012)

    Article  Google Scholar 

  16. Z. Sun, H. Zheng, J. Li, P. Du, Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 8, 2668–2676 (2015)

    Article  CAS  Google Scholar 

  17. J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4. ACS Sustain. Chem. Eng. 6, 2767–2779 (2018)

    Article  CAS  Google Scholar 

  18. W. Hou, S.B. Cronin, A review of surface plasmon resonance enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)

    Article  CAS  Google Scholar 

  19. P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467 (2011)

    Article  CAS  Google Scholar 

  20. D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011)

    Article  CAS  Google Scholar 

  21. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011)

    Article  CAS  Google Scholar 

  22. P. Wang, B. Huang, Y. Dai, M.-H. Whangbo, Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 14, 9813–9825 (2012)

    Article  CAS  Google Scholar 

  23. J. Qin, H. Zeng, Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl. Catal. B 209, 161–173 (2017)

    Article  CAS  Google Scholar 

  24. Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758–769 (2018)

    Article  CAS  Google Scholar 

  25. E. Shtamm, A. Purmal, Y.I. Skurlatov, Mechanism of catalytic ascorbic acid oxidation system Cu2+–ascorbic acid–O2. Int. J. Chem. Kinet. 11, 461–494 (1979)

    Article  CAS  Google Scholar 

  26. S. Lou, X. Jia, Y. Wang, S. Zhou, Template-assisted in situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst. Appl. Catal. B 176, 586–593 (2015)

    Article  Google Scholar 

  27. X. Hu, T. Liu, Y. Zhuang, W. Wang, Y. Li, W. Fan, Y. Huang, Recent advances in the analytical applications of copper nanoclusters. TrAC Trends Anal. Chem. 77, 66–75 (2016)

    Article  CAS  Google Scholar 

  28. B. Han, X. Hu, M. Yu, T. Peng, Y. Li, G. He, One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal–organic frameworks. RSC Adv. 8, 22748–22754 (2018)

    Article  CAS  Google Scholar 

  29. S.K. Md Saad, A. Ali Umar, M.I. Ali Umar, M. Tomitori, M.Y. Abd. Rahman, M. Mat Salleh, M. Oyama, Two-dimensional, hierarchical Ag-doped TiO2 nanocatalysts: effect of the metal oxidation state on the photocatalytic properties. ACS Omega 3, 2579–2587 (2018)

    Article  CAS  Google Scholar 

  30. X. Wang, M. Blackford, K. Prince, R.A. Caruso, Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 4, 476–482 (2012)

    Article  Google Scholar 

  31. X. Li, Y. Hou, Q. Zhao, G. Chen, Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode. Langmuir 27, 3113–3120 (2011)

    Article  CAS  Google Scholar 

  32. A. Takai, P.V. Kamat, Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5, 7369–7376 (2011)

    Article  CAS  Google Scholar 

  33. E. Cao, M. Sun, Y. Song, W. Liang, Exciton–plasmon hybrids for surface catalysis detected by SERS. Nanotechnology 29, 372001 (2018)

    Article  Google Scholar 

  34. A.P. Manuel, A. Kirkey, N. Mahdi, K. Shankar, Plexcitonics–fundamental principles and optoelectronic applications. J. Mater. Chem. C 7, 1821–1853 (2019)

    Article  CAS  Google Scholar 

  35. X. Cheng, P. Dong, Z. Huang, Y. Zhang, Y. Chen, X. Nie, X. Zhang, Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J. CO2 Util. 20, 200–207 (2017)

    Article  CAS  Google Scholar 

  36. Z. Zhang, W. Wang, E. Gao, S. Sun, L. Zhang, Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity. J. Phys. Chem. C 116, 25898–25903 (2012)

    Article  CAS  Google Scholar 

  37. Z. Zhan, J. An, H. Zhang, R.V. Hansen, L. Zheng, Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl. Mater. Interfaces 6, 1139–1144 (2014)

    Article  CAS  Google Scholar 

  38. L. Enzhou, K. Limin, Y. Yuhao, S. Tao, H. Xiaoyun, Z. Changjun, L. Hanchen, W. Qiuping, L. Xinghua, F. Jun, Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting. Nanotechnology 25, 165401 (2014)

    Article  Google Scholar 

  39. F. Guzman, S.S. Chuang, C. Yang, Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Ind. Eng. Chem. Res. 52, 61–65 (2012)

    Article  Google Scholar 

  40. S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J. Colloid Interface Sci. 356, 257–261 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Fund of Guizhou Province ([2015]2055), the Special Foundation for Young Scientists of Education Department of Guizhou Province (Nos. KY[2017]290, KY[2017]299), The Joint Foundation Project of Guizhou Province, Bijie City and Guizhou University of Engineering Science (LH[2016]7058, LH[2015]7587) and the Scientific Research Fund of Guizhou Provincial Education Department of China (Nos. KY[2016]100, KY[2015]450 and KY[2016]010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-yu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Gy., Le, Mt., Zeng, Gj. et al. A rapid preparation of PPECu and plasmonic Ag/PPECu nanocomposites with high performance for photocatalytic hydrogen production. J Mater Sci: Mater Electron 31, 2231–2239 (2020). https://doi.org/10.1007/s10854-019-02754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02754-3

Navigation