Skip to main content
Log in

Flower-like Bi2O3 with enhanced rate capability and cycling stability for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Bi2O3 samples were prepared by a hydrothermal way. The effects of microstructure on the electrochemical properties of Bi2O3 samples were studied by adjusting hydrothermal time of synthesization (2, 6, 10, 14, and 18 h) to control the microstructure. The structure, morphology, specific surface, and chemical environment of Bi2O3 were characterized by XRD, SEM, BET, and XPS. XRD patterns revealed that all diffraction peaks intensity increased with the increase of reaction time and it indicates that a higher crystallization had taken place. However, continuous improvements in electrochemical properties of the samples were not found with enhancement of the crystallinity. The specific capacitance decreases with the increase of crystalline grain size. From the SEM results, as the hydrothermal time increases, it is obvious that the sample particles agglomerate to flakes and then to flowers. The sample of Bi2O3 with a hydrothermal time of 10 h exhibited a high specific capacitance (980 F g−1 at 1 A g−1), excellent capacity retention (86.9% from 1 to 20 A g−1), and a good cycle stability (85.2% at 5 A g−1 after 1000 cycles). The significance of this work is that it is possible to boost the electrochemical properties of the samples by controlling the microstructures, including reducing the crystalline grain size and maintaining a proper morphology of Bi2O3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. You, M. Li, B. Ding, X. Wu, C. Li, Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 29, 1606895 (2017)

    Google Scholar 

  2. Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018)

    CAS  Google Scholar 

  3. R. Soni, S.N. Bhange, S. Kurungot, A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale 11, 7893–7902 (2019)

    CAS  Google Scholar 

  4. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3, 482–495 (2018)

    CAS  Google Scholar 

  5. L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018)

    Google Scholar 

  6. T. Xiong, T.L. Tan, L. Lu, W.S.V. Lee, J. Xue, Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Adv. Energy Mater. 8, 1702630 (2018)

    Google Scholar 

  7. S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, M. Liu, A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 387, 43–48 (2018)

    CAS  Google Scholar 

  8. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energ. Environ. Sci. 9, 102–106 (2016)

    CAS  Google Scholar 

  9. Z. Peng, X. Liu, H. Meng, Z. Li, B. Li, Z. Liu, S. Liu, Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 4577–4586 (2017)

    Google Scholar 

  10. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    CAS  Google Scholar 

  11. K. Brousse, S. Nguyen, A. Gilletc, S. Pinaud, R. Tan, A. Meffre, K. Soulantica, B. Chaudret, P.L. Taberna, M. Respaud, P. Simon, Laser-scribed Ru organometallic complex for the preparation of RuO2 micro-supercapacitor electrodes on flexible substrate. Electrochim. Acta 281, 816–821 (2018)

    CAS  Google Scholar 

  12. T. Audichon, T.W. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. J. Phys. Chem. C 120, 2562–2573 (2016)

    CAS  Google Scholar 

  13. A.D. Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012)

    Google Scholar 

  14. H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao, Y. Zhu, A high-performance Bi2O3/Bi2SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B 237, 59–67 (2018)

    CAS  Google Scholar 

  15. Y. Shi, L. Luo, Y. Zhang, Y. Chen, S. Wang, L. Li, Y. Long, F. Jiang, Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceram. Int. 43, 7627–7635 (2017)

    CAS  Google Scholar 

  16. T. Maeder, Review of Bi2O3 based glasses for electronics and related applications. Int. Mater. Rev. 58, 3–40 (2013)

    CAS  Google Scholar 

  17. W. Fang, N. Zhang, L. Fan, K. Sun, Preparation of polypyrrole-coated Bi2O3@CMK-3 nanocomposite for electrochemical lithium storage. Electrochim. Acta 238, 202–209 (2017)

    CAS  Google Scholar 

  18. W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 9, 2881–2891 (2016)

    CAS  Google Scholar 

  19. Y. Qiu, H. Fan, X. Chang, H. Dang, Q. Luo, Z. Cheng, Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl. Surf. Sci. 434, 16–20 (2018)

    CAS  Google Scholar 

  20. N.M. Shinde, Q.X. Xia, J.M. Yun, R.S. Mane, K.H. Kim, Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl. Mater. Interfaces 10, 11037–11047 (2018)

    CAS  Google Scholar 

  21. T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources 161, 1479–1485 (2006)

    CAS  Google Scholar 

  22. F. Zheng, G. Li, Y. Ou, Z. Wang, C. Su, Y. Tong, Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 46, 5021–5023 (2010)

    CAS  Google Scholar 

  23. X.J. Ma, W.B. Zhang, L.B. Kong, Y.C. Luo, L. Kang, β-Bi2O3: an underlying negative electrode material obeyed electrode potential over electrochemical energy storage device. Electrochim. Acta 192, 45–51 (2016)

    CAS  Google Scholar 

  24. S. Zheng, Y. Fu, L. Zheng, Z. Zhu, J. Chen, Z. Niu, D. Yang, PEDOT-engineered Bi2O3 nanosheet arrays for flexible asymmetric supercapacitors with boosted energy density. J. Mater. Chem. A 7, 5530–5538 (2019)

    CAS  Google Scholar 

  25. F. Qin, G. Li, R. Wang, J. Wu, H. Sun, R. Chen, Template-free fabrication of Bi2O3 and (BiO)2CO3 nanotubes and their application in water treatment. Chem. Eur. J. 18, 16491–16497 (2012)

    CAS  Google Scholar 

  26. X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao, B. Tang, Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors. Ceram. Int. 42, 2099–2105 (2016)

    CAS  Google Scholar 

  27. F. Cao, D. Wang, R. Deng, J. Tang, S. Song, Y. Lei, S. Wang, S. Su, X. Yang, H. Zhang, Porous Co3O4 microcubes: hydrothermal synthesis, catalytic and magnetic properties. CrystEngComm 13, 2123–2129 (2011)

    CAS  Google Scholar 

  28. J.J.E. Moreau, L. Vellutini, M. Wong, C. Man, C. Bied, Shape-controlled bridged silsesquioxanes: hollow tubes and spheres. Chem. Eur. J. 9, 1594–1599 (2003)

    CAS  Google Scholar 

  29. Y. Dai, L. Yin, Low Fe-doped Bi2O3 photocatalyst with long wavelength response: crystalline transition and mechanisms by first-principles calculation. J. Alloy. Compd. 563, 80–84 (2013)

    CAS  Google Scholar 

  30. G. Zhang, X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976–979 (2013)

    CAS  Google Scholar 

  31. D. Maruthamani, S. Vadivel, M. Kumaravel, B. Saravanakumar, B. Paul, S.S. Dhar, A. Habibi-Yangjeh, A. Manikandan, G. Ramadoss, Fine cutting edge shaped Bi2O3 rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449–459 (2017)

    CAS  Google Scholar 

  32. J. Li, G. Zan, Q. Wu, Facile synthesis and high electrochemical performance of porous carbon composites for supercapacitors. RSC Adv. 4, 35186–35192 (2014)

    CAS  Google Scholar 

  33. N.M. Shinde, Q.X. Xia, J.M. Yun, S. Singh, R.S. Mane, K.H. Kim, A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Trans. 46, 6601–6611 (2017)

    CAS  Google Scholar 

  34. P. Simon, Y. Gogotsi, B. Dunn. Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    Google Scholar 

  35. M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)

    CAS  Google Scholar 

  36. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    CAS  Google Scholar 

  37. U. Alver, A. Tanriverdi, Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Appl. Surf. Sci. 378, 368–374 (2016)

    CAS  Google Scholar 

  38. J. Li, D. Chen, Q. Zhang, Y. Zhang, X. Wang, C. Yang, Q. Wu. Synthesis of sponge-like Bi2O3 by using a soft/hard-combined biomembrane support system for application as supercapacitor. Eur. J. Inorg. Chem. 2018, 1688–1692 (2018)

    CAS  Google Scholar 

  39. X. Wang, J. Hu, W. Liu, G.Y. Wang, J. An, J. Lian, Ni-Zn binary system hydroxide, oxide and sulfidematerials: synthesis and high supercapacitorperformance. J. Mater. Chem. A 3, 23333–23344 (2015)

    CAS  Google Scholar 

  40. N.M. Shinde, Q.X. Xia, J.M. Yun, P.V. Shinde, S.M. Shaikh, R.K. Sahoo, S. Mathur, R.S. Mane, K.H. Kim, Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochim. Acta 298, 308–316 (2019)

    Google Scholar 

  41. Z. Yin, S. Zhang, Y. Chen, P. Gao, C. Zhu, P. Yang, L. Qi, Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J. Mater. Chem. A 3, 739–745 (2015)

    CAS  Google Scholar 

  42. H. Chen, J. Wang, F. Liao, X. Han, C. Xu, Y. Zhang, Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceram. Int. 45, 8008–8016 (2019)

    CAS  Google Scholar 

  43. C. Modal, M. Ganguly, P.K. Manna, S.M. Yusuf, T. Pal, Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29, 9179–9187 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 11875209, 11575130, 11705029) and National Key R&D Program of China (Grant No. 2019YFA0210003), partly supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ping, Y., Qian, L. et al. Flower-like Bi2O3 with enhanced rate capability and cycling stability for supercapacitors. J Mater Sci: Mater Electron 31, 2221–2230 (2020). https://doi.org/10.1007/s10854-019-02753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02753-4

Navigation