Skip to main content
Log in

Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal hybrid halide perovskite solar cells (PSCs) are very sensitive to air, and it is challenging to obtain air-processed, air-stable, and highly crystalline perovskite films. Photovoltaic performance decays dramatically due to air humidity influence with power conversion efficiency (PCE) of most air-processed PSCs < 15%. In this work, we develop a facile method to air-processed, highly crystalline (MA0.2FA0.8PbI3)1.0(CsPbBr3)0.05 perovskite films in ambient air with large grain size and low trap density based on mix-cation single crystal engineering. This method shows 75% increase in grain size and 28% decrease in trap density than conventional molecule/ion solution mixing-processed method. The large grain, low trap density, andhigh crystalline perovskite films result in high-efficient and air-stable PSCs. Consequently, the PCE increases to 36.7% from 12.56% for conventional molecule/ion solution mixing-processed devices and to 17.17% for single crystal engineering-based ones. Furthermore, benefiting from high moisture resistance of mix-cation single crystal engineering-based films, the PSC air stability has been improved significantly and 72% of the initial performance retains after 40 days of storage in ambient environment with a relative humidity of 60% at 25 °C without any encapsulation, with a 26% slower degradation rate than conventional solution-mixing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Jiang, M.A. Green, R. Sheng et al., Room temperature optical properties of organic–inorganic lead halide perovskites. Sol. Energy Mater. Sol. Cells 137, 253–257 (2015)

    CAS  Google Scholar 

  2. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506 (2014)

    CAS  Google Scholar 

  3. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    CAS  Google Scholar 

  4. G. Xing, N. Mathews, S.Y. Sun et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    CAS  Google Scholar 

  5. S.D. Stranks, G.E. Eperon, G. Grancini et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    CAS  Google Scholar 

  6. M.M. Lee, J. Teuscher, T. Miyasaka et al., Efficient hybrid solar cells basedon meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    CAS  Google Scholar 

  7. A. Mei, X. Li, L. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014)

    CAS  Google Scholar 

  8. Z.K. Tan, R.S. Moghaddam, M.L. Lai et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014)

    CAS  Google Scholar 

  9. G. Xing, N. Mathews, S.S. Lim et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014)

    CAS  Google Scholar 

  10. R. Dong, Y. Fang, J. Chae et al., High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015)

    CAS  Google Scholar 

  11. M.M. Lee, J. Teuscher, T. Miyasaka et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012)

    CAS  Google Scholar 

  12. W.S. Yang, B.W. Park, E.H. Jung et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    CAS  Google Scholar 

  13. G.E. Eperon, V.M. Burlakov, P. Docampo et al., Solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)

    CAS  Google Scholar 

  14. H.J. Snaith, A. Abate, J.M. Ball et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    CAS  Google Scholar 

  15. R.S. Sanchez, V. Gonzalez-Pedro, J.W. Lee et al., Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)

    CAS  Google Scholar 

  16. J.M. Frost, K.T. Butler, A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. Appl. Mater 2, 081506 (2014)

    Google Scholar 

  17. N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    CAS  Google Scholar 

  18. M. Saliba, T. Matsui, J.-Y. Seo et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)

    CAS  Google Scholar 

  19. D.P. McMeekin, G. Sadoughi, W. Rehman et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151 (2016)

    CAS  Google Scholar 

  20. B.J. Kim, D.H. Kim, Y.-Y. Lee et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015)

    CAS  Google Scholar 

  21. S.N. Habisreutinger, T. Leijtens, G.E. Eperon et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)

    CAS  Google Scholar 

  22. Z. Yang, C.-C. Chueh, F. Zuo et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015)

    Google Scholar 

  23. M. Xiao, F. Huang, W. Huang et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 53, 9898–9903 (2014)

    CAS  Google Scholar 

  24. G. Niu, W. Li, F. Meng et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)

    CAS  Google Scholar 

  25. L. Zheng, Y.-H. Chung, Y. Ma et al., A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 50, 11196–11199 (2014)

    CAS  Google Scholar 

  26. I.C. Smith, E.T. Hoke, D. Solis-Ibarra et al., A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 126, 11232–11235 (2014)

    Google Scholar 

  27. J.H. Noh, S.H. Im, J.H. Heo et al., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    CAS  Google Scholar 

  28. F. Zhang, X. Yang, H. Wang et al., Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6, 16140–16146 (2014)

    CAS  Google Scholar 

  29. Z. Wei, H. Chen, K. Yan et al., Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 13239–13243 (2014)

    CAS  Google Scholar 

  30. H. Zhou, Y. Shi, Q. Dong et al., Metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241–3246 (2014)

    CAS  Google Scholar 

  31. M.J. Brites, M.A. Barreiros, V. Corregidor et al., Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process. ACS Appl. Energy Mater. 2, 1844–1853 (2019)

    CAS  Google Scholar 

  32. S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chemi. Lett. 6, 3808–3814 (2015)

    Google Scholar 

  33. Y. Liu, Z. Yang, D. Cui et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015)

    CAS  Google Scholar 

  34. D.N. Dirin, I. Cherniukh, S. Yakunin et al., Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra. Chem. Mater 28, 8470–8474 (2016)

    CAS  Google Scholar 

  35. Y. Dang, Y. Liu, Y. Sun et al., Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 17, 665–670 (2015)

    CAS  Google Scholar 

  36. M.I. Saidaminov, A.L. Abdelhady, B. Murali et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015)

    Google Scholar 

  37. Y. Liu, J. Sun, Z. Yang et al., 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4, 1829–1837 (2016)

    CAS  Google Scholar 

  38. M. Zhang, Z. Zheng, Q. Fu et al., Efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. J. Phys. Chem. C 122, 10309–10315 (2018)

    CAS  Google Scholar 

  39. Y. Deng, Q. Dong, C. Bi et al., Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra. Adv. Energy Mater. 6, 1600372 (2016)

    Google Scholar 

  40. M. Zhang, Z. Zheng, Q. Fu et al., Solution-grown CsPbBr3 perovskite single crystals for photon detection. J. Phys. Chem. C 122, 10309–10315 (2018)

    CAS  Google Scholar 

  41. W. Nie, H. Tsai, R. Asadpour et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015)

    CAS  Google Scholar 

  42. N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015)

    CAS  Google Scholar 

  43. M. Shirayama, M. Kato, T. Miyadera et al., Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J. Appl. Phys. 119, 115501 (2016)

    Google Scholar 

  44. R.H. Bube, Trap Density, Determination by Space-charge‐limited currents. J. Appl. Phys. 33, 1733 (1962)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700702), the Natural Science Foundation of China (Grant No. 51502101), and the National Basic Research Program of China (Grant No. 2015CB258400). We also thank the testing center of Huazhong University of Science and Technology for SEM, XRD, PL, UV, and FT-IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanna Zhao.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhao, C., Chen, X. et al. Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells. J Mater Sci: Mater Electron 31, 2167–2176 (2020). https://doi.org/10.1007/s10854-019-02742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02742-7

Navigation