Skip to main content
Log in

Effect of swift heavy 86Kr30+ ions irradiation on optical and electrical properties of p-type transparent Ni-doped CuAlO2 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Swift heavy ion (SHI) irradiation is an effective approach to modulate the structure, optical and electrical properties of semiconductors. Herein, we present the influence of 86Kr30+ ions irradiation on optical and electrical properties of p-type transparent oxide semiconductor Ni-doped CuAlO2 films prepared by sol–gel method. The results reveal that Ni-doping inhibits the amorphization of CuAlO2 films during swift heavy ions irradiation and decreases the surface roughness of SHI-irradiated Ni-doped CuAlO2 films. However, SHI-irradiated Ni-doped CuAlO2 films exhibit higher optical transmittance (74%) and lower electrical resistivity (11.5 Ω cm), which corresponds to a decrease of two orders of magnitude due to the generation of a large number of carriers. In addition, SHI-irradiated Ni-doped CuAlO2 film renders photosensitive behavior and a reduced electrical resistivity of 7.4 Ω cm is achieved under UV illumination. The superior optical and electrical properties of SHI-irradiated Ni-doped CuAlO2 films can be ascribed to the thermal spike effect of high-energy ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Miki, T. Kawabe, Y. Shiina, S. Okamoto, T. Okamoto, T. Wada, Fabrication of p-type BaCuSF and n-type In2O3: Sn bilayer films and their applications to the back contact of CdS/CdTe solar cells. Jpn. J. Appl. Phys. 57(8), 08RC19 (2018)

    Article  Google Scholar 

  2. A.N. Banerjee, Enhanced field-emission properties of sol–gel-derived nanostructured SnO2: F thin film for vacuum microelectronics. Arab. J. Sci. Eng. 43(7), 3815–3821 (2017). https://doi.org/10.1007/s13369-017-2964-6

    Article  CAS  Google Scholar 

  3. Y. Wu, A.D. Giddings, M.A. Verheijen, B. Macco, T.J. Prosa, D.J. Larson, F. Roozeboom, W.M.M. Kessels, Dopant distribution in atomic layer deposited ZnO: Al films visualized by transmission electron microscopy and atom probe tomography. Chem. Mater. 30(4), 1209–1217 (2018). https://doi.org/10.1021/acs.chemmater.7b03501

    Article  CAS  Google Scholar 

  4. J.L. Lyons, A. Janotti, C.G. Van de Walle, Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett. 1, 1 (2009). https://doi.org/10.1063/1.3274043

    Article  CAS  Google Scholar 

  5. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2. Nature 389(6654), 939–942 (1997). https://doi.org/10.1038/40087

    Article  CAS  Google Scholar 

  6. C. Scheu, M. Gao, S.H. Oh, G. Dehm, S. Klein, A.P. Tomsia, M. Rühle, Bonding at copper–alumina interfaces established by different surface treatments: a critical review. J. Mater. Sci. 41(16), 5161–5168 (2006). https://doi.org/10.1007/s10853-006-0073-0

    Article  CAS  Google Scholar 

  7. M. Kracum, A. Kundu, M.P. Harmer, H.M. Chan, Novel interpenetrating Cu–Al2O3 structures by controlled reduction of bulk CuAlO2. J. Mater. Sci. 50(4), 1818–1824 (2014). https://doi.org/10.1007/s10853-014-8744-8

    Article  CAS  Google Scholar 

  8. C. Beraud, M. Courbiere, C. Esnouf, D. Juve, D. Treheux, Study of copper-alumina bonding. J. Mater. Sci. 24(12), 4545–4554 (1989). https://doi.org/10.1007/bf00544543

    Article  CAS  Google Scholar 

  9. H.F. Jiang, X.B. Zhu, H.C. Lei, G. Li, Z.R. Yang, W.H. Song, J.M. Dai, Y.P. Sun, Y.K. Fu, Effects of Mg substitution on the structural, optical, and electrical properties of CuAlO2 thin films. J. Alloys Compd. 509(5), 1768–1773 (2011). https://doi.org/10.1016/j.jallcom.2010.10.036

    Article  CAS  Google Scholar 

  10. J.Q. Pan, W. Lan, H.Q. Liu, Y.Z. Sheng, B.X. Feng, X. Zhang, E.Q. Xie, Preparation and properties of transparent conductive N-doped CuAlO2 films using N2O as the N source. J. Mater. Sci.-Mater. Electron. 25(9), 4004–4007 (2014). https://doi.org/10.1007/s10854-014-2121-x

    Article  CAS  Google Scholar 

  11. J.Q. Pan, S.K. Guo, X. Zhang, B.X. Feng, W. Lan, The photoconductivity properties of transparent Ni doped CuAlO2 films. Mater. Lett. 96, 31–33 (2013). https://doi.org/10.1016/j.matlet.2013.01.013

    Article  CAS  Google Scholar 

  12. F.A. Benko, F.P. Koffyberg, Opto-electronic properties of CuAlO2. J. Phys. Chem. Solids 45(1), 57–59 (1984). https://doi.org/10.1016/0022-3697(84)90101-X

    Article  CAS  Google Scholar 

  13. S. Yanagiya, N.V. Nong, J.X. Xu, N. Pryds, The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials 3(1), 318–328 (2010). https://doi.org/10.3390/ma3010318

    Article  CAS  Google Scholar 

  14. H.F. Jiang, X.C. Wang, X.P. Zang, W.F. Wu, S.P. Sun, C. Xiong, W.W. Yin, C.Y. Gui, X.B. Zhu, Electronic properties of bivalent cations (Be, Mg and Ca) substitution for Al in delafossite CuAlO2 semiconductor by first-principles calculations. J. Alloys Compd. 553, 245–252 (2013). https://doi.org/10.1016/j.jallcom.2012.11.101

    Article  CAS  Google Scholar 

  15. Y. Kumar, M. Herrera-Zaldivar, S.F. Olive-Mendez, F. Singh, X. Mathew, V. Agarwal, Modification of optical and electrical properties of zinc oxide-coated porous silicon nanostructures induced by swift heavy ion. Nanoscale Res. Lett. 7(1), 366 (2012). https://doi.org/10.1186/1556-276X-7-366

    Article  CAS  Google Scholar 

  16. S. Gupta, F. Singh, N.P. Lalla, B. Das, Swift heavy ion irradiation induced modifications in structural, microstructural, electrical and magnetic properties of Mn doped SnO2 thin films. Nucl. Instrum. Methods B 400, 37–57 (2017). https://doi.org/10.1016/j.nimb.2017.03.155

    Article  CAS  Google Scholar 

  17. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, S.H. Christiansen, Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9(4), 1341–1344 (2009). https://doi.org/10.1021/nl802977m

    Article  CAS  Google Scholar 

  18. S.S. Tinchev, Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Appl. Surf. Sci. 258(7), 2931–2934 (2012). https://doi.org/10.1016/j.apsusc.2011.11.009

    Article  CAS  Google Scholar 

  19. Y. Jin, R. Xu, J. Quan, Z. Wang, Q. Meng, Y. Sun, F. Ma, J. Han, G. Liu, J. Liu, C. Li, 1 GeV Ar ions induced amorphization in garnet. Nucl. Instrum. Methods Phys. Res. B 107(1–4), 227–231 (1996). https://doi.org/10.1016/0168-583x(95)00805-5

    Article  Google Scholar 

  20. N. Itoh, D.M. Duffy, S. Khakshouri, A.M. Stoneham, Making tracks: electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter. 21(47), 474205 (2009). https://doi.org/10.1088/0953-8984/21/47/474205

    Article  CAS  Google Scholar 

  21. N. ItoH, A.M. Stoneham, Materials modification by electronic excitation. Radiat. Eff. Defects Solids 155(1–4), 277–290 (2001). https://doi.org/10.1080/10420150108214126

    Article  CAS  Google Scholar 

  22. S. Gupta, V. Ganesan, I. Sulania, B. Das, Role of carrier concentration in swift heavy ion irradiation induced surface modifications. Surf. Sci. 664, 137–146 (2017). https://doi.org/10.1016/j.susc.2017.06.006

    Article  CAS  Google Scholar 

  23. H.K. Singh, D.K. Avasthi, S. Aggarwal, Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications. Nucl. Instrum. Methods B 353, 35–41 (2015). https://doi.org/10.1016/j.nimb.2015.04.031

    Article  CAS  Google Scholar 

  24. M.F. Khan, K. Siraj, A. Sattar, H. Faiz, A. Usman, J. Raisanen, Modification of structural and electircal properties of ZnO thin films by Ni2+ ions irradiation. Dig. J Nanomater. Biostruct. 12(3), 689–695 (2017)

    Google Scholar 

  25. N.G. Deshpande, R. Sharma, Modifications in physical, optical and electrical properties of tin oxide by swift heavy Au8+ ion bombardment. Curr. Appl. Phys. 8(2), 181–188 (2008). https://doi.org/10.1016/j.cap.2007.08.004

    Article  Google Scholar 

  26. N.S. Krasutskaya, A.I. Klyndyuk, L.E. Evseeva, S.A.J.I.M. Tanaeva, Synthesis and properties of NaxCoO2 (x = 0.55, 0.89) oxide thermoelectrics. Inorg. Met. 52(4), 393–399 (2016). https://doi.org/10.1134/s0020168516030079

    Article  CAS  Google Scholar 

  27. A. Berthelot, S. Hemon, F. Gourbilleau, C. Dufour, E. Dooryhee, E. Paumier, Nanometric size effects on irradiation of tin oxide powder. Nucl. Instrum. Methods B 146(1–4), 437–442 (1998). https://doi.org/10.1016/S0168-583x(98)00517-5

    Article  CAS  Google Scholar 

  28. J. Pan, Y. Sheng, J. Zhang, P. Huang, X. Zhang, B. Feng, Photovoltaic conversion enhancement of a carbon quantum dots/p-Type CuAlO2/n-Type ZnO photoelectric device. ACS Appl. Mater. Interfaces 7(15), 7878–7883 (2015). https://doi.org/10.1021/acsami.5b00868

    Article  CAS  Google Scholar 

  29. M. Ohashi, Y. Iida, H. Morikawa, Preparation of CuAlO2 films by wet chemical synthesis. J. Am. Ceram. Soc. 85(1), 270–272 (2004). https://doi.org/10.1111/j.1151-2916.2002.tb00080.x

    Article  Google Scholar 

  30. T. Suriwong, T. Thongtem, S. Thongtem, Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating. Curr. Appl. Phys. 14(9), 1257–1262 (2014). https://doi.org/10.1016/j.cap.2014.06.024

    Article  Google Scholar 

  31. M.K. Singh, S. Dussan, G.L. Sharma, R.S. Katiyar, Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films. J. Appl. Phys. 1, 1 (2008). https://doi.org/10.1063/1.3031799

    Article  CAS  Google Scholar 

  32. D.C. Agarwal, D.K. Avasthi, F. Singh, D. Kabiraj, P.K. Kulariya, I. Sulania, J.C. Pivin, R.S. Chauhan, Swift heavy ion induced structural modification of atom beam sputtered ZnO thin film. Surf. Coat. Technol. 203(17–18), 2427–2431 (2009). https://doi.org/10.1016/j.surfcoat.2009.02.109

    Article  CAS  Google Scholar 

  33. Y. Kumekawa, M. Hirai, Y. Kobayashi, S. Endoh, E. Oikawa, T. Hashimoto, Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2. J. Therm. Anal. Calorim. 99(1), 57–63 (2009). https://doi.org/10.1007/s10973-009-0454-0

    Article  CAS  Google Scholar 

  34. D. Chadda, J.D. Ford, M.A. Fahim, Chemical energy storage by the reaction cycle CuO/Cu2O. Int. J. Energy Res. 13(1), 63–73 (1989). https://doi.org/10.1002/er.4440130107

    Article  CAS  Google Scholar 

  35. R. Mo, Y. Liu, Synthesis and properties of delafossite CuAlO2 nanowires. J. Sol-Gel Sci. Technol. 57(1), 16–19 (2010). https://doi.org/10.1007/s10971-010-2317-3

    Article  CAS  Google Scholar 

  36. A.N. Banerjee, K.K. Chattopadhyay, Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1866485

    Article  Google Scholar 

  37. H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77(23), 3761–3763 (2000). https://doi.org/10.1063/1.1331089

    Article  CAS  Google Scholar 

  38. A. Bahari, M. Ghovati, A. Hashemi, Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2547-3

    Article  Google Scholar 

  39. M. Shahbazi, A. Bahari, S. Ghasemi, Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric. Synth. Met. 221, 332–339 (2016). https://doi.org/10.1016/j.synthmet.2016.09.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank National Natural Science Foundation of China (Grants Nos. 61874166, U1832149), and Natural Science Foundation of Gansu province (18JR3RA292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yin, D., Dong, C. et al. Effect of swift heavy 86Kr30+ ions irradiation on optical and electrical properties of p-type transparent Ni-doped CuAlO2 films. J Mater Sci: Mater Electron 31, 2130–2138 (2020). https://doi.org/10.1007/s10854-019-02734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02734-7

Navigation