Skip to main content
Log in

Growth of uniform MoS2 layers on free-standing GaN semiconductor for vertical heterojunction device application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The feasibility of van der Waals (VdW) heteroepitaxy of molybdenum disulphide (MoS2) layers on gallium nitride (GaN) semiconductor has attracted significant interest in heterojunction optoelectronic device applications. Here, we report on the growth of uniform MoS2 layers on free-standing GaN semiconductor for vertical heterojunction device application. A uniform MoS2 layer was directly grown on the n-type GaN wafer by sulphurization process of molybdenum oxide thin layer. Raman and scanning electron microscopy (SEM) analyses showed homogenous growth of the few-layers MoS2 forming a continuous film, considering the suitability of GaN semiconductor substrate. The fabricated MoS2/GaN vertical heterojunction showed excellent rectifying diode characteristics with a photovoltaic photoresponsivity under monochromatic light illumination. The X-ray photoelectron spectroscopy (XPS) studies showed the conduction and valence band offset values are around 0.44 and 2.3 eV with type II band alignment in the fabricated heterojunction device. This will facilitate effective movement of photoexcited electrons across the MoS2–GaN junction, while a large valence band offset will prevent movement of holes towards the GaN, resulting in low recombination loss to obtain a photovoltage in the heterojunction device. Our study revealed the formation of large-area homogenous MoS2 layers on GaN wafer for vertical heterojunction device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Diagram 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 73, 193–335 (1969)

    CAS  Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012)

    CAS  Google Scholar 

  3. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro, Neto, Novoselov, strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013)

    CAS  Google Scholar 

  4. A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195 (2015)

    CAS  Google Scholar 

  5. F. Withers, O.Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015)

    CAS  Google Scholar 

  6. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826 (2013)

    CAS  Google Scholar 

  7. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017)

    CAS  Google Scholar 

  8. C. Gong, Y. Zhang, W. Chen, J. Chu, T. Lei, J. Pu, L. Dai, C. Wu, Y. Cheng, T. Zhai, L. Li, J. Xiong, Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 4, 1700231 (2017)

    Google Scholar 

  9. F. Alharbi, J.D. Bass, A. Salhi, A. Alyamani, H.C. Kim, R.D. Miller, Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753 (2011)

    CAS  Google Scholar 

  10. F. Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)

    CAS  Google Scholar 

  11. A.F. Al-Hossainy, H. Kh. M. Thabet, Sh. Zoromba, A. Ibrahim, Facile synthesis and fabrication of a poly(ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J. Chem. 42, 10386–10395 (2018)

    CAS  Google Scholar 

  12. V. Dhyani, S. Das, High-speed scalable silicon-MoS2 p-n heterojunction photodetectors. Sci. Rep. 7, 44243 (2017)

    Google Scholar 

  13. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee, MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 25, 2910 (2015)

    CAS  Google Scholar 

  14. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010)

    CAS  Google Scholar 

  15. K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216 (2016)

    CAS  Google Scholar 

  16. Y. Zhang, T.R. Chang, B. Zhou, Y.T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.T. Jeng, S.K. Mo, Z. Hussain, A. Bansil, Z.X. Shen, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 11 (2014)

    Google Scholar 

  17. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 80, 353, aac9439 (2016)

    Google Scholar 

  18. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Google Scholar 

  19. A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011)

    Google Scholar 

  20. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Single-Layer MoS2 Phototransistors. ACS Nano 6, 74 (2012)

    CAS  Google Scholar 

  21. H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695 (2012)

    CAS  Google Scholar 

  22. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G.R. Bhimanapati, S.M. Eichfeld, R.A. Burke, P.B. Shah, T.P. O’Regan, F.J. Crowne, A. Glen Birdwell, J.A. Robinson, A.V. Davydov, T.G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580–3588 (2016)

    CAS  Google Scholar 

  23. Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu, Q. Wu, Y. Zhang, Y. Jiang, In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 12, 1062 (2016)

    CAS  Google Scholar 

  24. D. Ruzmetov, M.R. Neupane, A. Herzing, T.P. O’Regan, A. Mazzoni, M.L. Chin, R.A. Burke, F.J. Crowne, A. Glen Birdwell, D.E. Taylor, A. Kolmakov, K. Zhang, J.A. Robinson, A.V. Davydov, T.G. Ivanov, Van der Waals interfaces in epitaxial vertical metal/2D/3D semiconductor heterojunctions of monolayer MoS2 and GaN. 2D Mater. 5, 045016 (2018)

    CAS  Google Scholar 

  25. E.W. Lee, C.H. Lee, P.K. Paul, L. Ma, W.D. McCulloch, S. Krishnamoorthy, Y. Wu, A.R. Arehart, S. Rajan, Layer-transferred MoS2/GaN PN diodes. Appl. Phys. Lett. 107, 103505 (2015)

    Google Scholar 

  26. S. Krishnamoorthy, E.W. Lee, C.H. Lee, Y. Zhang, W.D. McCulloch, J.M. Johnson, J. Hwang, Y. Wu, S. Rajan, High current density 2D/3D MoS2/GaN Esaki tunnel diodes. Appl. Phys. Lett. 109, 183505 (2016)

    Google Scholar 

  27. R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian, X. Li, High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 6, 299 (2018)

    CAS  Google Scholar 

  28. R.F. Davis, III-V nitrides for electronic and optoelectronic applications. Proc. IEEE 79, 702 (1991)

    CAS  Google Scholar 

  29. T. Egawa, T. Jimbo, M. Umeno, Characteristics of InGaN/AlGaN light-emitting diodes on sapphire substrates. J. Appl. Phys. 82, 5816 (1997)

    CAS  Google Scholar 

  30. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155 (2014)

    Google Scholar 

  31. J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact. Adv. Mater. 20, 801 (2008)

    CAS  Google Scholar 

  32. G. Kalita, M. Dzulsyahmi Shaarin, B. Paudel, R. Mahyavanshi, M. Tanemura, Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction. Appl. Phys. Lett. 111, 013504 (2017)

    Google Scholar 

  33. P. Gupta, A.A. Rahman, S. Subramanian, S. Gupta, A. Thamizhavel, T. Orlova, S. Rouvimov, S. Vishwanath, V. Protasenko, M.R. Laskar, H.G. Xing, D. Jena, A. Bhattacharya, Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth. Sci. Rep. 6(1), 23708 (2015)

    Google Scholar 

  34. T.P. O’Regan, D. Ruzmetov, M.R. Neupane, R.A. Burke, A.A. Herzing, K. Zhang, A.G. Birdwell, D.E. Taylor, E.F.C. Byrd, S.D. Walck, A.V. Davydov, J.A. Robinson, T.G. Ivanov, Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS2 on GaN. Appl. Phys. Lett. 111, 051602 (2017)

    Google Scholar 

  35. P. Yan, Q. Tian, G. Yang, Y. Weng, Y. Zhang, J. Wang, F. Xie, N. Lu, Epitaxial growth and interfacial property of monolayer MoS2 on gallium nitride. RSC Adv. 8, 33193 (2018)

    CAS  Google Scholar 

  36. J. Wang, H. Shu, P. Liang, N. Wang, D. Cao, X. Chen, Thickness-dependent phase stability and electronic properties of GaN nanosheets and MoS2/GaN van der Waals heterostructures. J. Phys. Chem. C 123, 3861 (2019)

    CAS  Google Scholar 

  37. B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T.C. Sum, K.P. Loh, Ultrafast charge transfer in MoS2/WSe2p-n Heterojunction. 2D Mater. 3, 025020 (2016)

    Google Scholar 

  38. R.D. Mahyavanshi, P. Desai, A. Ranade, M. Tanemura, G. Kalita, Observing charge transfer interaction in cui and mos2 heterojunction for photoresponsive device application. ACS Appl. Electron. Mater. 1, 302 (2019)

    CAS  Google Scholar 

  39. M. Moun, M. Kumar, M. Garg, R. Pathak, R. Singh, Understanding of MoS2/GaN Heterojunction diode and its photodetection properties. Sci. Rep. 8, 11799 (2018)

    Google Scholar 

  40. K. Zhang, B. Jariwala, J. Li, N.C. Briggs, B. Wang, D. Ruzmetov, R.A. Burke, J.O. Lerach, T.G. Ivanov, M. Haque, R.M. Feenstra, J.A. Robinson, Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides. Nanoscale 10, 336 (2018)

    CAS  Google Scholar 

  41. S. Xiao, P. Xiao, X. Zhang, D. Yan, X. Gu, F. Qin, Z. Ni, Z.J. Han, K. Ostrikov, Atomic-layer soft plasma etching of MoS2. Sci. Rep. 6, 19945 (2016)

    CAS  Google Scholar 

  42. I. Sharma, B.R. Mehta, Optical properties and band alignments in ZnTe nanoparticles/MoS2 layer hetero-interface using SE and KPFM studies. Nanotechnology 28, 445701 (2017)

    Google Scholar 

  43. A.B. Slimane, A.F. Al-Hossainy, M. Sh. Zoromba, Synthesis and optoelectronic properties of conductive nanostructured poly(aniline-co-o-aminophenol) thin film. J. Mater. Sci.: Mater. Electron. 29, 8431–8445 (2018)

    CAS  Google Scholar 

  44. A.J. Mughal, T.N. Walter, K.A. Cooley, A. Bertuch, S.E. Mohney, Effect of substrate on the growth and properties of MoS2 thin films grown by plasma-enhanced atomic layer deposition. J. Vac. Sci. Technol. A 37, 010907 (2019)

    Google Scholar 

  45. J.K. Ellis, M.J. Lucero, G.E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011)

    Google Scholar 

  46. M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua, M.S. Alias, D.H. Anjum, C.C. Tseng, Y. Shi, H.J. Joyce, L.J. Li, B.S. Ooi, Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl. Phys. Lett. 109, 32104 (2016)

    Google Scholar 

  47. E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Precise determination of the valence-band edge in X-Ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620 (1980)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid (C) from the Japan Society for the Promotion of Science (Grant No. 19K05267). The authors would like to thank NGK Insulators, Ltd., Nagoya, Japan, for providing the GaN samples for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradeep Desai or Golap Kalita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, P., Ranade, A.K., Shinde, M. et al. Growth of uniform MoS2 layers on free-standing GaN semiconductor for vertical heterojunction device application. J Mater Sci: Mater Electron 31, 2040–2048 (2020). https://doi.org/10.1007/s10854-019-02723-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02723-w

Navigation