Skip to main content
Log in

Synthesis of tubular g-C3N4 via a H2SO4-assisted precursor self-assembly strategy for enhanced photocatalytic degradation of organic pollutant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured graphitic carbon nitride (g-C3N4) has attracted enormous attention as a promising visible-light photocatalyst because of its unique physicochemical properties. However, controlling the nanostructure of g-C3N4 is challenging because the most common template methods are high-cost and high-risk intensive as well as tedious. In this work, tubular g-C3N4 is prepared in situ by annealing a melamine-cyanurate supramolecular array, which is conducted through a H2SO4-assisted precursor self-assembly strategy. The as-prepared samples are characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller analysis, and other photoelectrochemical measurements. Moreover, the band structure of the g-C3N4 nanotubes is investigated to elucidate the carrier separation mechanism. The result shows that the g-C3N4 nanotubes have a hollow structure (average diameter: 0.2–1.2 μm, length: 10–50 μm, and thickness: 15–20 nm) and an enhanced electronic structure. Owing to the high specific surface area of their hierarchical pores and the efficient charge separation of their 1D feature, the g-C3N4 nanotubes exhibit high photocatalytic methylene blue (MB)/tetracycline (TC) degradation rates of 0.0265 min−1 and 0.0110 min−1, which are three and seven times higher than those of Bulk g-C3N4, respectively. Therefore, this study provides a facile and effective strategy for the construction of carbon nitride nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo, Energy Environ. Sci. 7, 2831 (2014). https://doi.org/10.1039/c4ee01299b

    Article  CAS  Google Scholar 

  2. Z. Tong, D. Yang, Z. Li et al., ACS Nano 11, 1103 (2017). https://doi.org/10.1021/acsnano.6b08251

    Article  CAS  Google Scholar 

  3. J.Q. Wen, J. Xie, Z.H. Yang et al., ACS Sustain. Chem. Eng. 5, 2224 (2017). https://doi.org/10.1021/acssuschemeng.6b02490

    Article  CAS  Google Scholar 

  4. Y.C. Huang, Z.J. Guo, H. Liu et al., Adv. Funct. Mater. 29, 9 (2019). https://doi.org/10.1002/adfm.201903490

    Article  CAS  Google Scholar 

  5. X. Wang, K. Maeda, A. Thomas et al., Nat. Mater. 8, 76 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  6. Y.S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, G.D. Stucky, Angew. Chem. Int. Ed. Engl. 52, 11083 (2013). https://doi.org/10.1002/anie.201304034

    Article  CAS  Google Scholar 

  7. Y.S. Jun, E.Z. Lee, X.C. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23, 3661 (2013). https://doi.org/10.1002/adfm.201203732

    Article  CAS  Google Scholar 

  8. S. Samanta, S. Martha, K. Parida, ChemCatChem 6, 1453 (2014). https://doi.org/10.1002/cctc.201300949

    Article  CAS  Google Scholar 

  9. J.F. Zhang, Y.F. Hu, X.L. Jiang, S.F. Chen, S.G. Meng, X.L. Fu, J. Hazard. Mater. 280, 713 (2014). https://doi.org/10.1016/j.jhazmat.2014.08.055

    Article  CAS  Google Scholar 

  10. H. Gao, H. Yang, J. Xu, S. Zhang, J. Li, Small. (2018). https://doi.org/10.1002/smll.201801353

    Article  Google Scholar 

  11. J. Zhang, M. Wu, B.B. He, R. Wang, H.W. Wang, Y.S. Gong, Appl. Surf. Sci. 470, 565 (2019). https://doi.org/10.1016/j.apsusc.2018.11.165

    Article  CAS  Google Scholar 

  12. F. Kamali, M.M. Eskandari, A. Rashidi, M. Baghalha, M. Hassanisadi, T. Hamzehlouyan, J. Hazard. Mater. 364, 218 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.095

    Article  CAS  Google Scholar 

  13. Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Sci Rep. 6, 19221 (2016). https://doi.org/10.1038/srep19221

    Article  CAS  Google Scholar 

  14. P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A 6, 12876 (2018). https://doi.org/10.1039/c8ta02061b

    Article  CAS  Google Scholar 

  15. M.S. Nasir, G.R. Yang, I. Ayub et al., Appl. Catal. B 257, 37 (2019). https://doi.org/10.1016/j.apcatb.2019.117855

    Article  CAS  Google Scholar 

  16. Y.Y. Li, B.X. Zhou, H.W. Zhang et al., Nanoscale 11, 6876 (2019). https://doi.org/10.1039/c9nr00229d

    Article  CAS  Google Scholar 

  17. B. Li, Y. Si, B.X. Zhou et al., ACS Appl. Mater. Interfaces. 11, 17341 (2019). https://doi.org/10.1021/acsami.8b22366

    Article  CAS  Google Scholar 

  18. G.F. Liao, Y. Gong, L. Zhang, H.Y. Gao, G.J. Yang, B.Z. Fang, Energy Environ. Sci. 12, 2080 (2019). https://doi.org/10.1039/c9ee00717b

    Article  CAS  Google Scholar 

  19. B.X. Zhou, S.S. Ding, B.J. Zhang et al., Appl. Catal. B 254, 321 (2019). https://doi.org/10.1016/j.apcatb.2019.05.015

    Article  CAS  Google Scholar 

  20. G.G. Zhang, A. Savateev, Y.B. Zhao, L.N. Li, M. Antonietti, J. Mater. Chem. A 5, 12723 (2017). https://doi.org/10.1039/c7ta03777e

    Article  CAS  Google Scholar 

  21. J. Gao, Y. Zhou, Z. Li, S. Yan, N. Wang, Z. Zou, Nanoscale 4, 3687 (2012). https://doi.org/10.1039/c2nr30777d

    Article  CAS  Google Scholar 

  22. S. Guo, Z. Deng, M. Li et al., Angew. Chem. Int. Ed. Engl. 55, 1830 (2016). https://doi.org/10.1002/anie.201508505

    Article  CAS  Google Scholar 

  23. S.W. Zhang, L.P. Zhao, M.Y. Zeng, J.X. Li, J.Z. Xu, X.K. Wang, Catal. Today 224, 114 (2014). https://doi.org/10.1016/j.cattod.2013.12.008

    Article  CAS  Google Scholar 

  24. H. Li, X.Q. Yan, B. Lin et al., Nano Energy 47, 481 (2018). https://doi.org/10.1016/j.nanoen.2018.03.026

    Article  CAS  Google Scholar 

  25. M. Tahir, C.B. Cao, F.K. Butt et al., CrystEngComm 16, 1825 (2014). https://doi.org/10.1039/c3ce42135j

    Article  CAS  Google Scholar 

  26. S.W. Bian, Z. Ma, W.G. Song, J. Phys. Chem. C 113, 8668 (2009). https://doi.org/10.1021/jp810630k

    Article  CAS  Google Scholar 

  27. M. Tahir, C.B. Cao, F.K. Butt et al., J. Mater. Chem. A 1, 13949 (2013). https://doi.org/10.1039/c3ta13291a

    Article  CAS  Google Scholar 

  28. J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A 1, 14766 (2013). https://doi.org/10.1039/c3ta13188b

    Article  CAS  Google Scholar 

  29. M. Wu, J. Zhang, B.B. He, H.W. Wang, R. Wang, Y.S. Gong, Appl. Catal. B 241, 159 (2019). https://doi.org/10.1016/j.apcatb.2018.09.037

    Article  CAS  Google Scholar 

  30. Y.Z. Zhang, S.C. Zong, C. Cheng et al., Appl. Catal. B 233, 80 (2018). https://doi.org/10.1016/j.apcatb.2018.03.104

    Article  CAS  Google Scholar 

  31. Y.M. Wang, H.Y. Cai, F.F. Qian et al., J. Colloid Interface Sci. 533, 47 (2019). https://doi.org/10.1016/j.jcis.2018.08.039

    Article  CAS  Google Scholar 

  32. B. Fei, Y.W. Tang, X.Y. Wang et al., Mater. Res. Bull. 102, 209 (2018). https://doi.org/10.1016/j.materresbull.2018.02.041

    Article  CAS  Google Scholar 

  33. J.J. Wu, N. Li, H.B. Fang, X. Li, Y.Z. Zheng, X. Tao, Chem. Eng. J. 358, 20 (2019). https://doi.org/10.1016/j.cej.2018.09.208

    Article  CAS  Google Scholar 

  34. P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Adv. Mater. 26, 8046 (2014). https://doi.org/10.1002/adma.201404057

    Article  CAS  Google Scholar 

  35. S.E. Guo, Y.Q. Tang, Y. Xie et al., Appl. Catal. B 218, 664 (2017). https://doi.org/10.1016/j.apcatb.2017.07.022

    Article  CAS  Google Scholar 

  36. H.J. Yu, R. Shi, Y.X. Zhao et al., Adv. Mater. 29, 8 (2017). https://doi.org/10.1002/adma.201605148

    Article  CAS  Google Scholar 

  37. M. Wu, J.M. Yan, X.N. Tang, M. Zhao, Q. Jiang, ChemSusChem 7, 2654 (2014). https://doi.org/10.1002/cssc.201402180

    Article  CAS  Google Scholar 

  38. Y.O. Wang, M.K. Bayazit, S.J.A. Moniz et al., Energy Environ. Sci. 10, 1643 (2017). https://doi.org/10.1039/c7ee01109a

    Article  CAS  Google Scholar 

  39. Y. Hong, C. Li, D. Li et al., Nanoscale 9, 14103 (2017). https://doi.org/10.1039/c7nr05155g

    Article  CAS  Google Scholar 

  40. H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, ACS Appl. Mater. Interfaces. 8, 2111 (2016). https://doi.org/10.1021/acsami.5b10613

    Article  CAS  Google Scholar 

  41. N. Tian, Y.H. Zhang, X.W. Li et al., Nano Energy 38, 72 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038

    Article  CAS  Google Scholar 

  42. F. Zeng, W.Q. Huang, J.H. Xiao et al., J. Phys. D 52, 11 (2019). https://doi.org/10.1088/1361-6463/aae81a

    Article  CAS  Google Scholar 

  43. J.Z. Chen, B. Li, J.F. Zheng et al., J. Phys. Chem. C 115, 7104 (2011). https://doi.org/10.1021/jp2004369

    Article  CAS  Google Scholar 

  44. P.X. Qiu, C.M. Xu, H. Chen et al., Appl. Catal. B 206, 319 (2017). https://doi.org/10.1016/j.apcatb.2017.01.058

    Article  CAS  Google Scholar 

  45. Q. Qiao, K. Yang, L.L. Ma et al., J. Phys. D 51, 12 (2018). https://doi.org/10.1088/1361-6463/aac817

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21676060 and 21706295), Guangzhou Research Collaborative Innovation Projects (201704020005), Foundation for Distinguished Young Talents in Higher Education of Guangdong (2016KQNCX123), and the Pearl River S&T Nova Program of Guangzhou (201906010024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongchao Huang or Zili Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Zuo, J., Huang, Y. et al. Synthesis of tubular g-C3N4 via a H2SO4-assisted precursor self-assembly strategy for enhanced photocatalytic degradation of organic pollutant. J Mater Sci: Mater Electron 31, 2022–2029 (2020). https://doi.org/10.1007/s10854-019-02721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02721-y

Navigation