Skip to main content
Log in

Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Purification of waste and contaminated water using safe and cost-effective methods is a global and local endeavor. The present work investigates the capability of zinc ferrite (ZFO) nanoparticles (NPs) as superior absorbents to eliminate the radionuclides from radioactive waste. The facile and eco-friendly sol–gel technique was utilized to synthesize ZFO NPs. The ZFO NPs are characterized via energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The EDX and FTIR analyses confirm the chemical composition and modes of the cubic ZFO phase. The FullProf Suite software is employed to analyze the XRD data via Rietveld refinement. The Williamson–Hall (W–H) method is used to determine the average crystallite size of ZFO NPs which found around 40.7 nm. SEM micrograph illustrates that ZFO NPs have a porous nature. Also, the TEM image exhibits that the ZFO NPs hold particles in the nanoscale range with a spherical form. Furthermore, the ZFO NPs show a superparamagnetic nature and have a semiconductor bandgap. Sorption behavior of 134Cs and 152+154Eu radionuclides in HNO3 acid medium was investigated using the batch technique. The obtained results indicated that the selectivity of 152+154Eu radionuclides is higher than 134Cs at acidic medium. The sorption kinetics results follow the pseudo-second-order model. The results obtained show that the adsorbent, ZFO, is an effective adsorbent for the removal of 134Cs and 152+154Eu radionuclides from the nitric acid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.M. Geise, H.-S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science. J. Polym. Sci. B 48(15), 1685–1718 (2010)

    Article  CAS  Google Scholar 

  2. S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J. Clean. Prod. 228, 755–769 (2019)

    Article  CAS  Google Scholar 

  3. N. Yahya, F. Aziz, N.A. Jamaludin, M.A. Mutalib, A.F. Ismail, W.N.W. Salleh, J. Jaafar, N. Yusof, N.A. Ludin, A review of integrated photocatalyst adsorbents for wastewater treatment. J. Environ. Chem. Eng. 6(6), 7411–7425 (2018)

    Article  CAS  Google Scholar 

  4. M.A.P. Kelm, M.J. da Silva Júnior, S.H. de Barros, C.M.B. de Araujo, R.B. de Assis Filho, E.J. Freitas, D.R. dos Santos, M.A. da Motta Sobrinho, Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environ. Sci. Pollut. Res. 26(28), 28558–28573 (2019)

    Article  CAS  Google Scholar 

  5. H.T. Madsen, Chapter 6—membrane filtration in water treatment—removal of micropollutants, in Chemistry of Advanced Environmental Purification Processes of Water, ed. by E.G. Søgaard (Elsevier, Amsterdam, 2014), pp. 199–248

    Chapter  Google Scholar 

  6. W. Fu, W. Zhang, Microwave-enhanced membrane filtration for water treatment. J. Membr. Sci. 568, 97–104 (2018)

    Article  CAS  Google Scholar 

  7. L. Deng, H.-H. Ngo, W. Guo, H. Zhang, Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment. Water Res. 157, 155–166 (2019)

    Article  CAS  Google Scholar 

  8. C.V. Subban, A.J. Gadgil, Electrically regenerated ion-exchange technology for desalination of low-salinity water sources. Desalination 465, 38–43 (2019)

    Article  CAS  Google Scholar 

  9. I. Levchuk, J.J. Rueda Márquez, M. Sillanpää, Removal of natural organic matter (NOM) from water by ion exchange—a review. Chemosphere 192, 90–104 (2018)

    Article  CAS  Google Scholar 

  10. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment (IWA Publishing, London, 2016)

    Book  Google Scholar 

  11. H. Wei, B. Gao, J. Ren, A. Li, H. Yang, Coagulation/flocculation in dewatering of sludge: a review. Water Res. 143, 608–631 (2018)

    Article  CAS  Google Scholar 

  12. K.-W. Kim, W.-J. Shon, M.-K. Oh, D. Yang, R.I. Foster, K.-Y. Lee, Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater. Nucl. Eng. Technol. 51(3), 738–745 (2019)

    Article  CAS  Google Scholar 

  13. V. Yargeau, 17—Water and wastewater treatment: chemical processes, in Metropolitan Sustainability, ed. by F. Zeman (Woodhead Publishing, Cambridge, 2012), pp. 390–405

    Chapter  Google Scholar 

  14. F. Ruiz-Beviá, M.J. Fernández-Torres, Effective catalytic removal of nitrates from drinking water: an unresolved problem? J. Clean. Prod. 217, 398–408 (2019)

    Article  CAS  Google Scholar 

  15. V.K. Gupta, I. Ali, Chapter 2—water treatment for inorganic pollutants by adsorption technology, in Environmental Water, ed. by V.K. Gupta, I. Ali (Elsevier, New Jersey, 2013), pp. 29–91

    Chapter  Google Scholar 

  16. A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, G.L. Dotto, C.J. Duran-Valle, Adsorption in Water Treatment, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, New Jersey, 2019)

    Google Scholar 

  17. M. Kraus, U. Trommler, F. Holzer, F.-D. Kopinke, U. Roland, Competing adsorption of toluene and water on various zeolites. Chem. Eng. J. 351, 356–363 (2018)

    Article  CAS  Google Scholar 

  18. X. Yu, W. Cui, F. Zhang, Y. Guo, T. Deng, Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption. Desalination 458, 76–83 (2019)

    Article  CAS  Google Scholar 

  19. Y. Xie, L. Ren, X. Zhu, X. Gou, S. Chen, Physical and chemical treatments for removal of perchlorate from water–a review. Process Saf. Environ. Prot. 116, 180–198 (2018)

    Article  CAS  Google Scholar 

  20. S.S. Fiyadh, M.A. AlSaadi, W.Z. Binti Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Binti Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 230, 783–793 (2019)

    Article  CAS  Google Scholar 

  21. C. Shen, Y. Zhao, W. Li, Y. Yang, R. Liu, D. Morgen, Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem. Eng. J. 372, 1019–1027 (2019)

    Article  CAS  Google Scholar 

  22. J. Singh, S. Basu, H. Bhunia, Dynamic CO2 adsorption on activated carbon adsorbents synthesized from polyacrylonitrile (PAN): kinetic and isotherm studies. Microporous Mesoporous Mater. 280, 357–366 (2019)

    Article  CAS  Google Scholar 

  23. M.E. de Oliveira Ferreira, B.G. Vaz, C.E. Borba, C.G. Alonso, I.C. Ostroski, Modified activated carbon as a promising adsorbent for quinoline removal. Microporous Mesoporous Mater. 277, 208–216 (2019)

    Article  CAS  Google Scholar 

  24. A.I. Osman, E. O’Connor, G. McSpadden, J.K. Abu-Dahrieh, C. Farrell, A.a.H Al-Muhtaseb, J. Harrison, D.W. Rooney, Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications. J. Chem. Technol. Biotechnol. (2019). https://doi.org/10.1002/jctb.6220

    Article  Google Scholar 

  25. S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590(Supplement C), 1–23 (2014)

    Article  CAS  Google Scholar 

  26. Z. Yin, H. Chen, J. Wang, W. Qian, M. Han, F. Wei, Resilient, mesoporous carbon nanotube-based strips as adsorbents of dilute organics in water. Carbon 132, 329–334 (2018)

    Article  CAS  Google Scholar 

  27. J. Zhang, Y. Hong, M. Liu, Y. Yue, Q. Xiong, G. Lorenzini, Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate. Int. J. Heat Mass Transf. 104, 871–877 (2017)

    Article  CAS  Google Scholar 

  28. X. Niu, Q. Xiong, J. Pan, X. Li, W. Zhang, F. Qiu, Y. Yan, Highly active and durable methanol electro-oxidation catalyzed by small palladium nanoparticles inside sulfur-doped carbon microsphere. Fuel 190, 174–181 (2017)

    Article  CAS  Google Scholar 

  29. J. Zhang, F. Xu, Y. Hong, Q. Xiong, J. Pan, A comprehensive review on the molecular dynamics simulation of the novel thermal properties of graphene. RSC Adv. 5(109), 89415–89426 (2015)

    Article  CAS  Google Scholar 

  30. A. Chafidz, F. Hamdan Latief, A.S. Al-Fatesh, M. Kaavessina, Crystallization and thermal stability of polypropylene/multi-wall carbon nanotube nanocomposites. Philos. Mag. Lett. 96(10), 367–374 (2016)

    Article  CAS  Google Scholar 

  31. A.I. Osman, A.T. Ahmed, C.R. Johnston, D.W. Rooney, Physicochemical characterization of miscanthus and its application in heavy metals removal from wastewaters. Environ. Prog. Sustain. Energy 37(3), 1058–1067 (2018)

    Article  CAS  Google Scholar 

  32. A.I. Osman, A. Abdelkader, C.R. Johnston, K. Morgan, D.W. Rooney, Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56(42), 12119–12130 (2017)

    Article  CAS  Google Scholar 

  33. A.I. Osman, A. Abdelkader, C. Farrell, D. Rooney, K. Morgan, Reusing, recycling and up-cycling of biomass: a review of practical and kinetic modelling approaches. Fuel Process. Technol. 192, 179–202 (2019)

    Article  CAS  Google Scholar 

  34. A.I. Osman, Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew. Energy 146, 484–496 (2020)

    Article  CAS  Google Scholar 

  35. M. Kumita, N. Yamawaki, K. Shinohara, H. Higashi, A. Kodama, N. Kobayashi, T. Seto, Y. Otani, Methanol adsorption behaviors of compression-molded activated carbon fiber with PTFE. Int. J. Refrig. 94, 127–135 (2018)

    Article  CAS  Google Scholar 

  36. T.H. Tu, P.T.N. Cam, L.V.T. Huy, M.T. Phong, H.M. Nam, N.H. Hieu, Synthesis and application of graphene oxide aerogel as an adsorbent for removal of dyes from water. Mater. Lett. 238, 134–137 (2019)

    Article  CAS  Google Scholar 

  37. A. Zeraatkar Moghaddam, E. Esmaeilkhanian, M. Shakourian-Fard, Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions. Int. J. Biol. Macromol. 128, 61–73 (2019)

    Article  CAS  Google Scholar 

  38. M.-P. Wei, H. Chai, Y.-L. Cao, D.-Z. Jia, Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. J. Colloid Interface Sci. 524, 297–305 (2018)

    Article  CAS  Google Scholar 

  39. E. Chmielewská, Chapter 4—natural zeolite: alternative adsorbent in purification or post-treatment of waters, in Modified Clay and Zeolite Nanocomposite Materials, ed. by M. Mercurio, B. Sarkar, A. Langella (Elsevier, New Jersey, 2019), pp. 87–112

    Chapter  Google Scholar 

  40. R. Soni, D.P. Shukla, Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere 219, 504–509 (2019)

    Article  CAS  Google Scholar 

  41. N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Zeolite nanoparticle as a superior adsorbent with high capacity: synthesis, surface modification and pollutant adsorption ability from wastewater. Microchem. J. 145, 74–83 (2019)

    Article  CAS  Google Scholar 

  42. H. Hassan, A. Salama, A.K. El-ziaty, M. El-Sakhawy, New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal. Int. J. Biol. Macromol. 131, 520–526 (2019)

    Article  CAS  Google Scholar 

  43. A. Abolghasemi Mahani, S. Motahari, A. Mohebbi, Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil. Mar. Pollut. Bull. 129(2), 438–447 (2018)

    Article  CAS  Google Scholar 

  44. T.L. Rodrigues Mota, A.P. de Marques Oliveira, E.H.M. Nunes, M. Houmard, Simple process for preparing mesoporous sol-gel silica adsorbents with high water adsorption capacities. Microporous Mesoporous Mater. 253, 177–182 (2017)

    Article  CAS  Google Scholar 

  45. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review. J. Environ. Manag. 232, 803–817 (2019)

    Article  CAS  Google Scholar 

  46. K. Buruga, H. Song, S. Jin, N. Bolan, T.K. Jagannathan, K.-H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.04.067

    Article  Google Scholar 

  47. J. Gogoi, A.D. Choudhury, D. Chowdhury, Graphene oxide clay nanocomposite as an efficient photo-catalyst for degradation of cationic dye. Mater. Chem. Phys. 232, 438–445 (2019)

    Article  CAS  Google Scholar 

  48. D. Clifford, P. Chu, A. Lau, Thermal regeneration of powdered activated carbon (pac) and pac-biological sludge mixtures. Water Res. 17(9), 1125–1138 (1983)

    Article  CAS  Google Scholar 

  49. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  CAS  Google Scholar 

  50. M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li, X. Wang, Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans. 42(41), 14710–14717 (2013)

    Article  CAS  Google Scholar 

  51. N.C. Mueller, B. Nowack, Nanoparticles for remediation: solving big problems with little particles. Elements 6(6), 395–400 (2010)

    Article  CAS  Google Scholar 

  52. D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater—a review. J. Water Process Eng. 7, 244–265 (2015)

    Article  Google Scholar 

  53. S. Liu, C. Ma, M.-G. Ma, F. Xu, 12—Magnetic nanocomposite adsorbents, in Composite Nanoadsorbents, ed. by G.Z. Kyzas, A.C. Mitropoulos (Elsevier, New Jersey, 2019), pp. 295–316

    Chapter  Google Scholar 

  54. K.H.J. Buschow, F.R. Boer, Physics of Magnetism and Magnetic Materials (Springer, Berlin, 2003)

    Book  Google Scholar 

  55. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Facile synthesis of Nd2Sn2O7-SnO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water. J. Environ. Manag. 233, 107–119 (2019)

    Article  CAS  Google Scholar 

  56. J. Gómez-Pastora, E. Bringas, I. Ortiz, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014)

    Article  CAS  Google Scholar 

  57. J. Trujillo-Reyes, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J. Hazard. Mater. 280, 487–503 (2014)

    Article  CAS  Google Scholar 

  58. S. Supriya, S. Kumar, M. Kar, Electrical properties and dipole relaxation behavior of zinc-substituted cobalt ferrite. J. Electron. Mater. 46(12), 6884–6894 (2017)

    Article  CAS  Google Scholar 

  59. R. Rani, G. Kumar, K.M. Batoo, M. Singh, Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique. Appl. Phys. A 115(4), 1401–1407 (2014)

    Article  CAS  Google Scholar 

  60. F. Sinfrônio, P. Santana, S. Coelho, F. Silva, A. de Menezes, S. Sharma, Magnetic and structural properties of cobalt-and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J. Electron. Mater. 46(2), 1145–1154 (2017)

    Article  CAS  Google Scholar 

  61. B.J. Rani, R. Mageswari, G. Ravi, V. Ganesh, R. Yuvakkumar, Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005−xNi 0.005Fe2O4, where x = 0, 0.002, 0.004 M) nanoparticles. J. Mater. Sci. 28(21), 16450–16458 (2017)

    CAS  Google Scholar 

  62. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. B 174, 106930 (2019)

    Article  CAS  Google Scholar 

  63. S.S. Lee, W. Li, C. Kim, M. Cho, B.J. Lafferty, J.D. Fortner, Surface functionalized manganese ferrite nanocrystals for enhanced uranium sorption and separation in water. J. Mater. Chem. A 3(43), 21930–21939 (2015)

    Article  CAS  Google Scholar 

  64. M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Article  CAS  Google Scholar 

  65. L.P. Lingamdinne, Y.-L. Choi, I.-S. Kim, J.-K. Yang, J.R. Koduru, Y.-Y. Chang, Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 326, 145–156 (2017)

    Article  CAS  Google Scholar 

  66. M. Attallah, H. Hassan, M. Youssef, Synthesis and sorption potential study of Al2O3ZrO2CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl. Radiat. Isot. 147, 40–47 (2019)

    Article  CAS  Google Scholar 

  67. H. Hassan, E.K. Elmaghraby, Retention behavior of cesium radioisotope on poly (acrylamido-sulfonic acid) synthesized by chain polymerization. Appl. Radiat. Isot. 146, 40–47 (2019)

    Article  CAS  Google Scholar 

  68. H. Hassan, S. Kenawy, G.T. El-Bassyouni, E.M. Hamzawy, R. Hassan, Sorption behavior of cesium and europium radionuclides onto nano-sized calcium silicate. Part. Sci. Technol. (2018). https://doi.org/10.1080/02726351.2018.150810

    Article  Google Scholar 

  69. M. Mansur, A. Mushtaq, Separation of yttrium-90 from strontium-90 via colloid formation. J. Radioanal. Nucl. Chem. 288(2), 337–340 (2011)

    Article  CAS  Google Scholar 

  70. B. Pangeni, H. Paudyal, K. Inoue, K. Ohto, H. Kawakita, S. Alam, Preparation of natural cation exchanger from persimmon waste and its application for the removal of cesium from water. Chem. Eng. J. 242, 109–116 (2014)

    Article  CAS  Google Scholar 

  71. E. El Afifi, M. Attallah, E. Borai, Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J. Environ. Radioact. 151, 156–165 (2016)

    Article  CAS  Google Scholar 

  72. F. Shehata, M. Attallah, E. Borai, M. Hilal, M. Abo-Aly, Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl. Radiat. Isot. 68(2), 239–249 (2010)

    Article  CAS  Google Scholar 

  73. G. Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321, 119–130 (2013)

    Article  CAS  Google Scholar 

  74. S. Liao, C. Xue, Y. Wang, J. Zheng, X. Hao, G. Guan, A. Abuliti, H. Zhang, G. Ma, Simultaneous separation of iodide and cesium ions from dilute wastewater based on PPy/PTCF and NiHCF/PTCF electrodes using electrochemically switched ion exchange method. Sep. Purif. Technol. 139, 63–69 (2015)

    Article  CAS  Google Scholar 

  75. H.S. Hassan, M.F. Attallah, S.M. Yakout, Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J. Radioanal. Nucl. Chem. 286(1), 17–26 (2010)

    Article  CAS  Google Scholar 

  76. Y. Hu, C. Zhao, L. Yin, T. Wen, Y. Yang, Y. Ai, X. Wang, Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chem. Eng. J. 349, 347–357 (2018)

    Article  CAS  Google Scholar 

  77. K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: a review. Ceram. Int. 45(9), 11143–11157 (2019)

    Article  CAS  Google Scholar 

  78. R.R. Shahraki, M. Ebrahimi, S.S. Ebrahimi, S. Masoudpanah, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 324(22), 3762–3765 (2012)

    Article  CAS  Google Scholar 

  79. C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J. Magn. Magn. Mater. 474, 282–286 (2019)

    Article  CAS  Google Scholar 

  80. A.H. Ashour, A.I. El-Batal, M.I.A.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  81. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1−x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Article  CAS  Google Scholar 

  82. M.I.A.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, R.A. Fahim, M.M. Atta, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  83. M.I.A. Abdel Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol-Gel. Sci. Technol. 90(3), 631–642 (2019)

    Article  CAS  Google Scholar 

  84. M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J. Mater. Sci. 28(23), 17627–17634 (2017)

    CAS  Google Scholar 

  85. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. 27(5), 4800–4809 (2016)

    CAS  Google Scholar 

  86. H. Khojasteh, M. Salavati-Niasari, M.-P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Adv. 6(81), 78043–78052 (2016)

    Article  CAS  Google Scholar 

  87. F. Ansari, M. Salavati-Niasari, Simple sol-gel auto-combustion synthesis and characterization of lead hexaferrite by utilizing cherry juice as a novel fuel and green capping agent. Adv. Powder Technol. 27(5), 2025–2031 (2016)

    Article  CAS  Google Scholar 

  88. F. Ansari, A. Sobhani, M. Salavati-Niasari, PbTiO3/PbFe12O19 nanocomposites: green synthesis through an eco-friendly approach. Compos. B 85, 170–175 (2016)

    Article  CAS  Google Scholar 

  89. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20(6), 3970–3974 (2014)

    Article  CAS  Google Scholar 

  90. D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

    Article  CAS  Google Scholar 

  91. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod. 222, 103–110 (2019)

    Article  CAS  Google Scholar 

  92. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  93. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)

    Article  Google Scholar 

  94. S. Zinatloo-Ajabshir, N. Ghasemian, M. Salavati-Niasari, Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceram. Int. 46(1), 66–73 (2019)

    Article  CAS  Google Scholar 

  95. A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)

    Article  CAS  Google Scholar 

  96. A.A. Reheem, M.A. Maksoud, A. Ashour, Surface modification and metallization of polycarbonate using low energy ion beam. Radiat. Phys. Chem. 125, 171–175 (2016)

    Article  CAS  Google Scholar 

  97. A.S. Awed, M.I.A.A. Maksoud, M.M. Atta, R.A. Fahim, Nonlinear optical properties of irradiated 1,2-dihydroxyanthraquinone thin films: merged experimental and TD-DFT insights. J. Mater. Sci. 30(8), 7858–7865 (2019)

    CAS  Google Scholar 

  98. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  CAS  Google Scholar 

  99. K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0.1Zn0.9−xFe2O4 nanoferrites: role of constant mole percent of Cu2+ dopant in place of Zn2+. Ceram. Int. 43(11), 7984–7991 (2017)

    Article  CAS  Google Scholar 

  100. M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)

    Article  CAS  Google Scholar 

  101. A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)

    Article  CAS  Google Scholar 

  102. M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Article  CAS  Google Scholar 

  103. V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5–12 (2016)

    Article  CAS  Google Scholar 

  104. A. El-Ghandour, A. Awed, M.A. Maksoud, M. Nasher, 1,2-Dihydroxyanthraquinone: synthesis, and induced changes in the structural and optical properties of the nanostructured thin films due to γ-irradiation. Spectrochim. Acta A 206, 466–473 (2019)

    Article  CAS  Google Scholar 

  105. E.C.B. Felipe, A.C.Q. Ladeira, Separation of zirconium from hafnium by ion exchange. Sep. Sci. Technol. 53(2), 330–336 (2018)

    Article  CAS  Google Scholar 

  106. A.M. Donia, A.A. Atia, A.M. Daher, E.A. Elshehy, Extraction and separation of zirconium(IV) and hafnium(IV) from chloride media using magnetic resin with phosphoric acid functionality. J. Dispers. Sci. Technol. 32(2), 193–202 (2011)

    Article  CAS  Google Scholar 

  107. H.A. Ibrahim, H.S. Hassan, H.S. Mekhamer, S.H. Kenawy, Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder. J. Radioanal. Nucl. Chem. 319(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  108. H.S. Hassan, E.K. Elmaghraby, Preparation of graphite by thermal annealing of polyacrylamide precursor for adsorption of Cs(I) and Co(II) ions from aqueous solutions. Can. J. Chem. 90(10), 843–850 (2012)

    Article  CAS  Google Scholar 

  109. S. Singhal, J. Singh, S. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    Article  CAS  Google Scholar 

  110. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)

    Article  CAS  Google Scholar 

  111. Y. Gao, Z. Wang, J. Pei, H. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloys Compd. 774, 1233–1242 (2019)

    Article  CAS  Google Scholar 

  112. G. Mustafa, M. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloys Compd. 618, 428–436 (2015)

    Article  CAS  Google Scholar 

  113. C. Wu, Y. Xu, S. Xu, J. Tu, C. Tian, Z. Lin, Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: effect of zinc content and site occupation. J. Environ. Sci. 79, 248–255 (2019)

    Article  Google Scholar 

  114. M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)

    Article  CAS  Google Scholar 

  115. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  CAS  Google Scholar 

  116. M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  117. M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe2+CrxFe(2−x) O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)

    Article  CAS  Google Scholar 

  118. M. Amer, T. Meaz, A. Mostafa, H. El-Ghazally, Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)

    Article  CAS  Google Scholar 

  119. R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  CAS  Google Scholar 

  120. A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Phys. B 507, 27–34 (2017)

    Article  CAS  Google Scholar 

  121. S. Chakrabarty, A. Dutta, M. Pal, Effect of yttrium doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 461, 69–75 (2018)

    Article  CAS  Google Scholar 

  122. V.J. Sawant, S.R. Bamane, R.V. Shejwal, S.B. Patil, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin into MCF-7 breast cancer cells. J. Magn. Magn. Mater. 417, 222–229 (2016)

    Article  CAS  Google Scholar 

  123. P. Motavallian, B. Abasht, H. Abdollah-Pour, Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol–gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)

    Article  CAS  Google Scholar 

  124. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018)

    Article  CAS  Google Scholar 

  125. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  126. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  CAS  Google Scholar 

  127. A.H. El Foulani, A. Aamouche, F. Mohseni, J.S. Amaral, D.M. Tobaldi, R.C. Pullar, Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4. J. Alloys Compd. 774, 1250–1259 (2019)

    Article  CAS  Google Scholar 

  128. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties. Ceram. Int. 40(9), 14509–14516 (2014)

    Article  CAS  Google Scholar 

  129. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  130. R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceram. Int. 43(16), 13661–13669 (2017)

    Article  CAS  Google Scholar 

  131. M. Gharagozlou, R. Bayati, Low temperature processing and magnetic properties of zinc ferrite nanoparticles. Superlattices Microstruct. 78, 190–200 (2015)

    Article  CAS  Google Scholar 

  132. H. El moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E.K. Hlil, A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. J. Alloys Compd. 581, 776–781 (2013)

    Article  CAS  Google Scholar 

  133. M.N. Akhtar, M.A. Khan, M. Ahmad, M. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  134. D.G. Chen, X.G. Tang, J.B. Wu, W. Zhang, Q.X. Liu, Y.P. Jiang, Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process. J. Magn. Magn. Mater. 323(12), 1717–1721 (2011)

    Article  CAS  Google Scholar 

  135. D. Chen, X. Tang, Q. Liu, Y. Jiang, C. Ma, R. Li, Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni, Zn)Fe2O4 ceramics. J. Appl. Phys. 113(21), 214110 (2013)

    Article  CAS  Google Scholar 

  136. S. Khandaker, T. Kuba, S. Kamida, Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal. J. Environ. Chem. Eng. 5(2), 1456–1464 (2017)

    Article  CAS  Google Scholar 

  137. D. Su, H. Huang, S. Huang, N. Liu, S. Ding, Extraction of trivalent europium and americium from nitric acid solution with bisdiglycolamides. Sep. Sci. Technol. 50(9), 1384–1393 (2015)

    Article  CAS  Google Scholar 

  138. J. Rais, S. Tachimori, E. Yoo, J. Alexová, M. Bubeníková, Extraction of radioactive Cs and Sr from nitric acid solutions with 25,27-bis(1-octyloxy)calix[4]-26,28-crown-6 and dicyclohexyl-18-crown-6: effect of nature of the organic solvent. Sep. Sci. Technol. 50(8), 1202–1212 (2015)

    Article  CAS  Google Scholar 

  139. M. Nakase, H. Kinuhata, K. Takeshita, Multi-staging for extraction of cesium from nitric acid by a single liquid–liquid countercurrent centrifugal extractor with Taylor vortices. J. Nucl. Sci. Technol. 50(11), 1089–1098 (2013)

    Article  CAS  Google Scholar 

  140. E.A. Mowafy, H.F. Aly, Extraction of actinides and selected fission products from nitric acid medium using long chain monoamides. Solvent Extr. Ion Exch. 19(4), 629–641 (2001)

    Article  CAS  Google Scholar 

  141. X. Wang, S. Yang, W. Shi, J. Li, T. Hayat, X. Wang, Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch. Spectrosc. Tech. Theor. Calc. Environ. Sci. Technol. 49(19), 11721–11728 (2015)

    Article  CAS  Google Scholar 

  142. R.E. Connick, W.H. McVey, The aqueous chemistry of zirconium. J. Am. Chem. Soc. 71(9), 3182–3191 (1949)

    Article  CAS  Google Scholar 

  143. I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Franklin Inst. 183(1), 102–105 (1917)

    Article  Google Scholar 

  144. M.A. Attia, S.I. Moussa, R.R. Sheha, H.H. Someda, E.A. Saad, Hydroxyapatite/NiFe2O4 superparamagnetic composite: facile synthesis and adsorption of rare elements. Appl. Radiat. Isot. 145, 85–94 (2019)

    Article  CAS  Google Scholar 

  145. H.G. Mobtaker, T. Yousefi, S.M. Pakzad, Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite. J. Nucl. Mater. 482, 306–312 (2016)

    Article  CAS  Google Scholar 

  146. M.R. Mahmoud, G.M. Rashad, E. Metwally, E.A. Saad, A.M. Elewa, Adsorptive removal of 134Cs+, 60Co2+ and 152+154Eu3+ radionuclides from aqueous solutions using sepiolite: single and multi-component systems. Appl. Clay Sci. 141, 72–80 (2017)

    Article  CAS  Google Scholar 

  147. H. Hassan, W. Madcour, E.K. Elmaghraby, Removal of radioactive cesium and europium from aqueous solutions using activated Al2O3 prepared by solution combustion. Mater. Chem. Phys. 234, 55–66 (2019)

    Article  Google Scholar 

  148. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei, Y. Yang, Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47(7), 2563–2571 (2013)

    Article  CAS  Google Scholar 

  149. A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, R. Zarghami, Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem. Eng. J. 172(1), 572–580 (2011)

    Article  CAS  Google Scholar 

  150. S. Khandaker, Y. Toyohara, S. Kamida, T. Kuba, Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour. Ind. 19, 35–46 (2018)

    Article  Google Scholar 

  151. A. Zaki, T. El-Zakla, M.A. El Geleel, Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J. Membr. Sci. 401, 1–12 (2012)

    Article  CAS  Google Scholar 

  152. P. Sharma, R. Tomar, Sorption behaviour of nanocrystalline MOR type zeolite for Th(IV) and Eu(III) removal from aqueous waste by batch treatment. J. Colloid Interface Sci. 362(1), 144–156 (2011)

    Article  CAS  Google Scholar 

  153. K. Lv, L.-P. Xiong, Y.-M. Luo, Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloids Surf. A 433, 37–46 (2013)

    Article  CAS  Google Scholar 

  154. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of copper(II), chromium(III), nickel(II) and lead(II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 170(2), 969–977 (2009)

    Article  CAS  Google Scholar 

  155. L. Peng, W. Hanyu, Y. Ni, Y. Zhuoxin, P. Duoqiang, W. Wangsuo, β-Zeolite modified by ethylenediamine for sorption of Th(IV). Radiochim. Acta 105(6), 463 (2017)

    Article  CAS  Google Scholar 

  156. A.A. Zaki, M.I. Ahmad, K.M.A. El-Rahman, Sorption characteristics of a landfill clay soil as a retardation barrier of some heavy metals. Appl. Clay Sci. 135, 150–167 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Materials Science Unit, Radiation Physics Department, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project Nanostructured Magnetic Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. A. Abdel Maksoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H.S., Abdel Maksoud, M.I.A. & Attia, L.A. Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution. J Mater Sci: Mater Electron 31, 1616–1633 (2020). https://doi.org/10.1007/s10854-019-02678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02678-y

Navigation