Skip to main content
Log in

Structural analyses of polyaniline–titanium oxide composite for acetone detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study characterized the performance of polyaniline–titanium oxide (PANI–TiO2) composite to assess its use as potential acetone detector in semiconductor gas sensor. Aniline (ANI), which refers to a monomer, has been used for in situ chemical polymerization to produce polyaniline (PANI) and titanium oxide (TiO2) composite. PANI was varied in composition of 20, 30, and 40 wt% loading with TiO2. Inclusion of PANI in composite is meant to detect acetone at various concentrations (100–500 ppm) at selected operating temperatures (27, 35, 45, 55, and 65 °C). The results signified that the best structure of PANI loading in TiO2 is at 30 wt% due to the molecular structure for gas sensor. The sensitivity of PANI–TiO2 composite pellet for various acetone vapor concentrations had been optimum at 300 ppm with 7.9% sensitivity. The optimum operating temperature was 45 °C with 10.12% sensitivity. Structural characterizations via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmet–Teller were conducted to correlate with the sensor sensing performance. Indeed, the 30 wt% of PANI–TiO2 composite has the potential to detect 300 ppm of acetone and displayed exceptional agreement with outcomes retrieved at 45 °C detection temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Lin et al., Chapter 9—nanotechnology on toxic gas detection and treatment, in Novel nanomaterials for biomedical, environmental and energy applications, ed. by X. Wang, X. Chen (Elsevier, Amsterdam, 2019), pp. 275–297

    Chapter  Google Scholar 

  2. R. Awang, N.F.H. Aziz, N. Purhanudin, Z. Zalita, Characterization of a-CNx thin films prepared by RF-PECVD technique for humidity sensor. Sains Malays. 46(3), 509–514 (2017)

    Article  CAS  Google Scholar 

  3. C. Chen et al., A new sensor for the assessment of personal exposure to volatile organic compounds. Atmos. Environ. 54, 679–687 (2012)

    Article  CAS  Google Scholar 

  4. S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci.: Adv. Mater. Devices 1(4), 431–453 (2016)

    Google Scholar 

  5. N.A. Bakar, A. Rahmi, A.A. Umar, M.M. Salleh, M. Yahaya, Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater. Sci. Forum 663665, 276–279 (2010)

    Article  Google Scholar 

  6. Aparicio-Mart et al., Room temperature detection of acetone by a PANI/cellulose/WO3 electrochemical sensor. J. Nanomater. 2018, 9 (2018)

    Google Scholar 

  7. V. Saasa et al., Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8(1), 12 (2018)

    Article  Google Scholar 

  8. F. Meng et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B: Chem. 219, 209–217 (2015)

    Article  CAS  Google Scholar 

  9. S.S.A. Karim, C.-F. Dee, B.Y. Majlis, M.A. Mohamed, Recent progress on fabrication of zinc oxide nanorod-based field effect transistor biosensors. Sains Malays. 48(6), 1301–1310 (2019)

    Article  Google Scholar 

  10. L. Dai et al., Ammonia sensing characteristics of La10Si5MgO26-based sensors using In2O3 sensing electrode with different morphologies and CuO reference electrode. Sens. Actuators B: Chem. 228, 716–724 (2016)

    Article  CAS  Google Scholar 

  11. L. Gao et al., Facile synthesis of the composites of polyaniline and TiO2 nanoparticles using self-assembly method and their application in gas sensing. Nanomaterials 9(4), 493 (2019)

    Article  CAS  Google Scholar 

  12. M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari, Carbon monoxide gas-sensing properties of CeO2–ZnO thin films. Appl. Surf. Sci. 255(5, Part 2), 3033–3039 (2008)

    Article  CAS  Google Scholar 

  13. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  14. O. Alev et al., Gas sensor application of hydrothermally growth TiO2 nanorods. Procedia Eng. 120, 1162–1165 (2015)

    Article  CAS  Google Scholar 

  15. S. Kalikeri et al., Visible light-induced photocatalytic degradation of reactive blue-19 over highly efficient polyaniline–TiO2 nanocomposite: a comparative study with solar and UV photocatalysis. Environ. Sci. Pollut. Res. 25(4), 3731–3744 (2018)

    Article  CAS  Google Scholar 

  16. P.R. Deshmukh et al., Chemical synthesis of PANI–TiO2 composite thin film for supercapacitor application. RSC Adv. 5(84), 68939–68946 (2015)

    Article  CAS  Google Scholar 

  17. O. Benhabiles et al., Preparation and characterization of TiO2-PVDF/PMMA blend membranes using an alternative non-toxic solvent for UF/MF and photocatalytic application. Molecules 24(4), 724 (2019)

    Article  CAS  Google Scholar 

  18. Y. Wang et al., TiO2-based nanoheterostructures for promoting gas sensitivity performance: designs, developments, and prospects. Sensors 17(9), 1971 (2017)

    Article  Google Scholar 

  19. I. Kim, W.-Y. Choi, Hybrid gas sensor having TiO2 nanotube arrays and SnO2 nanoparticles. Int. J. Nanotechnol. 14, 156–165 (2017)

    Article  Google Scholar 

  20. I. Fratoddi et al., Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuators B: Chem. 220, 534–548 (2015)

    Article  CAS  Google Scholar 

  21. H. Abdullah, N.M. Naim, N.A.N. Azmy, A.A. Hamid, PANI-Ag-Cu nanocomposite thin films based impedimetric microbial sensor for detection of Bacteria. J. Nanomater. 2014, 1–8 (2014)

    Google Scholar 

  22. N.M. Naim, H. Abdullah, N.A.N. Azmy, A.A. Umar, A.A. Hamid, S. Shaari, Fabrication and characterization of PANI-Ag-Co nanocomposite thin films as microbial sensor for E. coli detection. Mater. Sci. Forum 846, 641–649 (2016)

    Article  Google Scholar 

  23. L. Kumar et al., Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B: Chem. 240, 408–416 (2017)

    Article  CAS  Google Scholar 

  24. Z. Pang et al., Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values. Nanotechnology 28(22), 225501 (2017)

    Article  Google Scholar 

  25. S.G. Pawar et al., Development of nanostructured polyaniline–titanium dioxide gas sensors for ammonia recognition. J. Appl. Polym. Sci. 125(2), 1418–1424 (2012)

    Article  CAS  Google Scholar 

  26. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22(4), 273–280 (2012)

    Article  Google Scholar 

  27. K.I. Ajeel, Q.S. Kareem, Synthesis and characteristics of polyaniline (PANI) filled by graphene (PANI/GR) nano-films. J. Phys: Conf. Ser. 1234, 012020 (2019)

    CAS  Google Scholar 

  28. A. Katoch et al., Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem. Eng. J. 192, 262–268 (2012)

    Article  CAS  Google Scholar 

  29. X. Li et al., Surface modification of TiO2 nanoparticles by polyaniline. Appl. Surf. Sci. 217(1), 16–22 (2003)

    Article  CAS  Google Scholar 

  30. T. Jeevananda, Studies on polyaniline coated nano titanium dioxide composites (2017)

  31. M.T. Ramesan, T. Sampreeth, Synthesis, characterization, material properties and sensor application study of polyaniline/niobium doped titanium dioxide nanocomposites. J. Mater. Sci.: Mater. Electron. 28(21), 16181–16191 (2017)

    CAS  Google Scholar 

  32. P. Rajakani, C. Vedhi, Electrocatalytic properties of polyaniline–TiO2 nanocomposites. Int. J. Ind. Chem. 6(4), 247–259 (2015)

    Article  CAS  Google Scholar 

  33. J.-C. Xu, W.-M. Liu, H.-L. Li, Titanium dioxide doped polyaniline. Mater. Sci. Eng., C 25(4), 444–447 (2005)

    Article  Google Scholar 

  34. K.S.W. Sing et al., Reporting physisorption data for gas/solid systems, in Handbook of Heterogeneous Catalysis (2015), pp. 1217–1230

  35. D. Zhang, Z. Wu, X. Zong, Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuators B: Chem. 288, 232–242 (2019)

    Article  CAS  Google Scholar 

  36. S.M. Hicks, A.J. Killard, Electrochemical impedance characterisation of tungsten trioxide–polyaniline nanocomposites for room temperature acetone sensing. Sens. Actuators B: Chem. 194, 283–289 (2014)

    Article  CAS  Google Scholar 

  37. C. Wang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  CAS  Google Scholar 

  38. Pawar, S.G., et al., Fabrication of Polyaniline/TiO2Nanocomposite Ammonia Vapor Sensor. Sensors and Transducers (2011), p. 125

  39. A.S. Mohd Chachuli et al., A hydrogen gas sensor based on TiO2 nanoparticles on alumina substrate. Sensors 18(8), 2483 (2018)

    Article  Google Scholar 

  40. C. Zhu et al., Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature. Front. Chem. 6, 493 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USM Fellowship; and Dana Modal Insan Grant, Universiti Kebangsaan Malaysia [Grant No.: MI-2019-002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raihana Bahru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahru, R., Zamri, M.F.M.A., Shamsuddin, A.H. et al. Structural analyses of polyaniline–titanium oxide composite for acetone detection. J Mater Sci: Mater Electron 31, 1574–1584 (2020). https://doi.org/10.1007/s10854-019-02674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02674-2

Navigation