Skip to main content

A novel Si/Ag@PM@MIL-100 porous double-shell anode materials prepared by in-situ growth with MOF coatings

Abstract

In order to improve the electrochemical performance of Si-based anode materials, a marvelous Si-based anode material was prepared with double-shell structure (Si/Ag@PM@MIL-100). The double-shell structure achieved a dual functions of the inner shell and the outer shell. The outer shell MIL-100 can promote the formation of a stable SEI film and enhance the synergistic effect of Si/Ag@PM. The three-dimensional interconnected porous carbon nanosheets and MWCNTs (PM) network of the inner shell can accommodated the volume expansion of Si during charge and discharge. It also effectively alleviated the press and prevented the pulverization of the Si particles. The structure also suppressed the aggregation of the nano-Ag particles. Nano-Ag and PM can improve the electrical conductivity of electrodes. The porous outer shell layer was obtained by HCl to dissolve iron oxide of the outer shell. The double-shell structure particles contained a large number of pores and interconnected channel. The structure is beneficial to the storage and rapid transportation of lithium ions. The high conductivity improved the conduction of electrons. The initial coulombic efficiency of the Si/Ag@PM@MIL-100 electrode reached 80.4% and maintained a specific discharge capacity of 615 mAh/g at a current density of 1 A/g with a capacity retention ratio of 62.9% after 500 cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Z. Pan, Q. Ding, L. Yao et al., Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets. Nanoscale 11(21), 10546–10554 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    Z. Pan, S. Xin, H. Jiang et al., Highly boosted discharged energy density of polymer nanocomposites via novel hybrid structure as fillers. J. Mater. Chem. A (2019). https://doi.org/10.1039/C9TA03292D

    Article  Google Scholar 

  4. 4.

    J. Hao, L. Yang, C. Li et al., High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4(5), 1813–1819 (2011)

    Article  CAS  Google Scholar 

  5. 5.

    Z. Pan, D. Hu, Y. Zhang et al., Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 7(14), 4072–4078 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    J. Chen, X. Yu, F. Yang et al., Enhanced energy density of polymer composites filled with BaTiO3@Ag nanofibers for pulse power application. J. Mater. Sci. 28(11), 8043–8050 (2017)

    CAS  Google Scholar 

  7. 7.

    B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    R. Marom, S.F. Amalraj, N. Leifer et al., A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938–9954 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Z.L. Xu, J.K. Kim, K. Kang, Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    J. Wang, H. Tang, L. Zhang et al., Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 1(5), 16050 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    H. Wu, G. Yu, L. Pan et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4 (1943)

    Google Scholar 

  12. 12.

    K.S. Eom, J.T. Lee, M. Oschatz et al., A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium. Nat. Commun. 8, 13888 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    M.V. Shelke, H. Gullapalli, K. Kalaga et al., Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li-ion battery. Adv. Mater. Interfaces 4(10), 1601043 (2017)

    Article  CAS  Google Scholar 

  14. 14.

    Y.C. Zhang, Y. You, S. Xin et al., Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25, 120–127 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    M.K. Jangid, F.J. Sonia, R. Kali et al., Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation. Carbon 111, 602–616 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Y.M. Kim, J. Ahn, S.H. Yu et al., Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries. Electrochim. Acta 151, 256–262 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    T. Wang, J. Zhu, Y. Chen et al., Large-scale production of silicon nanoparticles@ graphene embedded in nanotubes as ultra-robust battery anodes. J. Mater. Chem. A 5(10), 4809–4817 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    H.C. Shim, I. Kim, C.S. Woo et al., Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Nanoscale 9(14), 4713–4720 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    J. Xie, L. Tong, L. Su et al., Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sour. 342, 529–536 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Z.L. Xu, X. Liu, Y. Luo et al., Nanosilicon anodes for high performance rechargeable batteries. Prog. Mater. Sci. 90, 1–44 (2017)

    Article  CAS  Google Scholar 

  21. 21.

    S.H. Baek, J.S. Park, Y.M. Jeong et al., Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery. J. Alloys Compds. 660, 387–391 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    T. Cetinkaya, M. Uysal, M.O. Guler et al., Developing lithium ion battery silicon/cobalt core-shell electrodes for enhanced electrochemical properties. Int. J. Hydrog. Energy 39(36), 21405–21413 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Liu, B. Chen, F. Cao et al., One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. J. Mater. Chem. 21(43), 17083–17086 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    B.M. Bang, H. Kim, H.K. Song et al., Scalable approach tomulti-dimensional bulk Si anodes via metal-assisted chemical etching. Energy Environ. Sci. 4(12), 5013–5019 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    C. Xiao, N. Du, X. Shi et al., Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2(48), 20494–20499 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    H. Tian, X. Tan, F. Xin et al., Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11, 490–499 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    W. He, H. Tian, F. Xin et al., Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries. J. Mater. Chem. A 3(35), 17956–17962 (2015)

    CAS  Article  Google Scholar 

  28. 28.

    X. Zhuang, Y. Zhang, L. He et al., Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim. Acta 249, 166–172 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    D. Chen, X. Mei, G. Ji et al., Reversible lithium–ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem. Int. Ed. 51(10), 2409–2413 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Z. Zhang, L.L. Kong, S. Liu et al., A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@ carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017)

    Article  CAS  Google Scholar 

  31. 31.

    H.I. Park, M. Sohn, D.S. Kim et al., Carbon nanofiber/3D nanoporous silicon hybrids as high capacity lithium storage materials. ChemSusChem 9(8), 834–840 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    W. Kong, L. Yan, Y. Luo et al., Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv. Funct. Mater. 27(18), 1606663 (2017)

    Article  CAS  Google Scholar 

  33. 33.

    J. Zhang, C.P. Yang, Y.X. Yin et al., Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 28(43), 9539–9544 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Zhang, H.K. Jing, S. Liu et al., Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J. Mater. Chem. A 3(13), 6827–6834 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Zhao, W. Wu, J. Li et al., Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    D. Su, M. Cortie, G. Wang, Fabrication of N-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 7(8), 1602014 (2017)

    Article  CAS  Google Scholar 

  37. 37.

    X. Fang, H. Peng, A revolution in electrodes: recent progress in rechargeable lithium–sulfur batteries. Small 11(13), 1488–1511 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Wang, C. Wang, Y. Wang et al., Superior sodium–ion storage performance of Co3O4@ nitrogen-doped carbon: derived from a metal–organic framework. J. Mater. Chem. A 4(15), 5428–5435 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    T. Zhou, Y. Du, S. Yin et al., Nitrogen-doped cobalt phosphate@ nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9(8), 2563–2570 (2016)

    CAS  Article  Google Scholar 

  40. 40.

    L. Song, J. Zhang, L. Sun et al., Mesoporous metal–organic frameworks: design and applications. Energy Environ. Sci. 5(6), 7508–7520 (2012)

    CAS  Article  Google Scholar 

  41. 41.

    H. Tian, S. Wang, C. Zhang et al., Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J. Mater. Chem. A 5(23), 11615–11622 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    P. Horcajada, T. Chalati, C. Serre et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9(2), 172 (2010)

    CAS  Article  Google Scholar 

  43. 43.

    G. Huang, F. Zhang, X. Du et al., Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2), 1592–1599 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    X. Yang, H. Xue, Q. Yang et al., Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem. Eng. J. 308, 340–346 (2017)

    CAS  Article  Google Scholar 

  45. 45.

    L. Yu, J. Liu, X. Xu et al., Metal–organic framework-derived NiSb alloy embedded in carbon hollow spheres as superior lithium–ion battery anodes. ACS Appl. Mater. Interfaces 9(3), 2516–2525 (2017)

    CAS  Article  Google Scholar 

  46. 46.

    N. Liu, H. Wu, M.T. Mcdowell et al., A yolk-shell design for stabilized and scalable li–ion battery alloy anodes. Nano Lett. 12(6), 3315 (2012)

    CAS  Article  Google Scholar 

  47. 47.

    H. Xu, L. Qin, J. Chen et al., Toward advanced sodium-ion batteries: a wheel-inspired yolk–shell design for large-volume-change anode materials. J. Mater. Chem. A 6(27), 13153–13163 (2018)

    CAS  Article  Google Scholar 

  48. 48.

    D.W. Xu, S. Xin, Y. You et al., Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. ChemNanoMat 2(7), 712–718 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    C. Luo, S. Niu, G. Zhou et al., Dual-functional hard template directed one-step formation of a hierarchical porous carbon-carbon nanotube hybrid for lithium-sulfur batteries. Chem. Commun. 52(82), 12143–12146 (2016)

    CAS  Article  Google Scholar 

  50. 50.

    X. Huang, M. Li, Multi-channel and porous SiO@ N-doped C rods as anodes for high-performance lithium-ion batteries. Appl. Surf. Sci. 439, 336–342 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    J. Chen, Z. Mao, L. Zhang et al., Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon 130, 41–47 (2018)

    CAS  Article  Google Scholar 

  52. 52.

    J.M. Song, Y.Z. Lin, H.B. Yao et al., Superlong β-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. ACS Nano 3(3), 653–660 (2009)

    CAS  Article  Google Scholar 

  53. 53.

    L. Zhou, H. Xu, H. Zhang et al., Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chem. Commun. 49(77), 8695–8697 (2013)

    CAS  Article  Google Scholar 

  54. 54.

    H.B. Lin, H.B. Rong, W.Z. Huang et al., Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries. J. Mater. Chem. A 2(34), 14189–14194 (2014)

    CAS  Article  Google Scholar 

  55. 55.

    W. Sun, L. Wan, X. Li et al., Bean pod-like Si@ dopamine-derived amorphous carbon@ N-doped graphene nanosheet scrolls for high performance lithium storage. J. Mater. Chem. A 4(28), 10948–10955 (2016)

    CAS  Article  Google Scholar 

  56. 56.

    Y.X. Yin, S. Xin, L.J. Wan et al., Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 115(29), 14148–14154 (2011)

    CAS  Article  Google Scholar 

  57. 57.

    J. Zhang, X. Zhang, C. Zhang et al., Facile and efficient synthesis of a microsized SiOx/C core–shell composite as anode material for lithium ion batteries. Energy Fuels 31(8), 8758–8763 (2017)

    CAS  Article  Google Scholar 

  58. 58.

    J.S. Kim, C.C. Nguyen, H.J. Kim et al., Siloxane-capped amorphous nano-SiOx/graphite with improved dispersion ability and battery anode performance. RSC Adv. 4(25), 12878–12881 (2014)

    CAS  Article  Google Scholar 

  59. 59.

    Z. Yang, Y. Xia, J. Ji et al., Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Adv. 6(15), 12107–12113 (2016)

    CAS  Article  Google Scholar 

  60. 60.

    S. Chen, L. Shen, P.A. van Aken et al., Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium–ion batteries. Adv. Mater. 29(21), 1605650 (2017)

    Article  CAS  Google Scholar 

  61. 61.

    F. Zheng, M. He, Y. Yang et al., Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium–ion batteries. Nanoscale 7(8), 3410–3417 (2015)

    CAS  Article  Google Scholar 

  62. 62.

    L. Chang, K. Wang, L. Huang et al., Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. J. Mater. Chem. A 5(39), 20892–20902 (2017)

    CAS  Article  Google Scholar 

  63. 63.

    M.V. Reddy, A. Sakunthala, S. SelvashekaraPandian et al., Preparation, comparative energy storage properties, and impedance spectroscopy studies of environmentally friendly cathode, Li (MMn11/6) O4 (M= Mn1/6, Co1/6,(Co1/12Cr1/12)). J. Phys. Chem. C 117(18), 9056–9064 (2013)

    CAS  Article  Google Scholar 

  64. 64.

    A.Y. Shenouda, H.K. Liu, Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J. Electrochem. Soc. 157(11), A1183–A1187 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16626 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, X., Wei, C. et al. A novel Si/Ag@PM@MIL-100 porous double-shell anode materials prepared by in-situ growth with MOF coatings. J Mater Sci: Mater Electron 31, 1524–1534 (2020). https://doi.org/10.1007/s10854-019-02669-z

Download citation