Skip to main content
Log in

Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present research, pristine ZnO and praseodymium (Pr)-doped ZnO (Pr0.02Zn0.98O,Pr0.04Zn0.96O) nanoparticles were synthesized using sol–gel method for photocatalytic degradation of methyl orange (MO) dye under visible light illumination. The structure of the designed nanoparticles was shown by XRD to be hexagonal wurtzite structure with no spurious peaks. The EDS was used to authenticate the existence of dopant with elemental composition. Enhanced optical absorption in the visible region was observed by DRS study. The photocatalytic test revealed that Pr0.04Zn0.96O demonstrated the excellent photocatalytic performance for MO degradation under visible light illumination. Electrochemical impedance spectroscopy under visible light illumination verified the increased photocatalytic activity of Pr0.04Zn0.96O photocatalyst. These results identify that introduction of Pr-doped ZnO nanoparticles enhanced the visible light active degradation activity due to inhibition of electron–hole recombination, thereby enhancing the optical response of ZnO to visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Liu, W. Cao, Y. Su, Y. Wang, X. Wang, Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl. Catal. B 111, 271–279 (2012)

    Article  CAS  Google Scholar 

  2. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO 3 nanoplates. Nanoscale 4(17), 5431–5439 (2012)

    Article  CAS  Google Scholar 

  3. H. Li, X. Gui, C. Ji, P. Li, Z. Li, L. Zhang, E. Shi, K. Zhu, J. Wei, K. Wang, H. Zhu, Photocatalytic, recyclable CdS nanoparticle-carbon nanotube hybrid sponges. Nano Res. 5(4), 265–271 (2012)

    Article  CAS  Google Scholar 

  4. C. Yu, C.Y. Jimmy, A simple way to prepare C-N-codoped TiO 2 photocatalyst with visible-light activity. Catal. Lett. 129(3–4), 462 (2009)

    Article  CAS  Google Scholar 

  5. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Hoelscher, R.E. Sherriff, M.T. Harris, M.J. Callahan, Time-resolved photoluminescence lifetime measurements of the Γ 5 and Γ 6 free excitons in ZnO. J. Appl. Phys. 88(4), 2152–2153 (2000)

    Article  CAS  Google Scholar 

  6. X. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin, H. Cheng, J.M. Chen, J.F. Lee, T.S. Lin, Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134(24), 10251–10258 (2012)

    Article  CAS  Google Scholar 

  7. P.X. Gao, Y. Ding, Z.L. Wang, Electronic transport in superlattice-structured ZnO nanohelix. Nano Lett. 9(1), 137–143 (2008)

    Article  CAS  Google Scholar 

  8. J. Kim, W. Kim, K. Yong, CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing. J. Phys. Chem. C 116(29), 15682–15691 (2012)

    Article  CAS  Google Scholar 

  9. S. Park, S. An, H. Ko, C. Jin, C. Lee, Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl. Mater. Interfaces. 4(7), 3650–3656 (2012)

    Article  CAS  Google Scholar 

  10. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011)

    Article  CAS  Google Scholar 

  11. C. Yu, K. Yang, Q. Shu, C.Y. Jimmy, F. Cao, X. Li, X. Zhou, Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Sci. China Chem. 55(9), 1802–1810 (2012)

    Article  CAS  Google Scholar 

  12. A.B. Moghaddam, T. Nazari, J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int. J. Electrochem. Sci. 4, 247–257 (2009)

    CAS  Google Scholar 

  13. O.J. Perales-Perez, M.S. Tomar, S.P. Singh, A. Watanabe, T. Arai, A. Kasuya, K. Tohji, Ambient-temperature synthesis of nanocrystalline ZnO and its application in the generation of hydrogen. Phys. Status Solidi (c) 1(4), 803–806 (2004)

    Article  CAS  Google Scholar 

  14. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B 61(22), 15019 (2000)

    Article  CAS  Google Scholar 

  15. C.L. Yu, K. Yang, J. Yu, P. Peng, F.F. Cao, X. Li, X.C. Zhou, Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO. Acta Phys. Chim. Sin. 27(2), 505–512 (2011)

    CAS  Google Scholar 

  16. Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B 105(3–4), 335–345 (2011)

    Article  CAS  Google Scholar 

  17. Y. Hao, L. Zhang, Y. Zhang, L. Zhao, B. Zhang, Synthesis of pearl necklace-like ZnO–ZnWO 4 heterojunctions with enhanced photocatalytic degradation of Rhodamine B. RSC Adv. 7(42), 26179–26184 (2017)

    Article  CAS  Google Scholar 

  18. T. Sun, J. Qiu, C. Liang, Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C 112(3), 715–721 (2008)

    Article  CAS  Google Scholar 

  19. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131(35), 12540–12541 (2009)

    Article  CAS  Google Scholar 

  20. D. Chu, Y. Masuda, T. Ohji, K. Kato, Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 26(4), 2811–2815 (2009)

    Article  CAS  Google Scholar 

  21. N. Kislov, J. Lahiri, H. Verma, D.Y. Goswami, E. Stefanakos, M. Batzill, Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmuir 25(5), 3310–3315 (2009)

    Article  CAS  Google Scholar 

  22. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006)

    Article  CAS  Google Scholar 

  23. H. Dai, Y. Zhou, Q. Liu, Z. Li, C. Bao, T. Yu, Z. Zhou, Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells. Nanoscale 4(17), 5454–5460 (2012)

    Article  CAS  Google Scholar 

  24. Y. Qiu, K. Yan, H. Deng, S. Yang, Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12(1), 407–413 (2011)

    Article  CAS  Google Scholar 

  25. Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, J. Lin, F. Li, Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 4(20), 6568–6573 (2012)

    Article  CAS  Google Scholar 

  26. N. Tripathy, R. Ahmad, H.S. Jeong, Y.B. Hahn, Time-dependent control of hole-opening degree of porous ZnO hollow microspheres. Inorg. Chem. 51(2), 1104–1110 (2011)

    Article  CAS  Google Scholar 

  27. I.N. Reddy, C.V. Reddy, J. Shim, B. Akkinepally, M. Cho, K. Yoo, D. Kim, Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catal. Today 340, 277–285 (2018)

    Article  CAS  Google Scholar 

  28. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    Article  CAS  Google Scholar 

  29. A. Senthilraja, B. Krishnakumar, R. Hariharan, A.J. Sobral, C. Surya, N.A.A. John, M. Shanthi, Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity. Sep. Purif. Technol. 202, 373–384 (2018)

    Article  CAS  Google Scholar 

  30. J.J. Macías-Sánchez, L. Hinojosa-Reyes, A.D. Caballero-Quintero, W. De La Cruz, E. Ruiz-Ruiz, A. Hernández-Ramírez, J.L. Guzmán-Mar, Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2, 4-D and picloram herbicides. Photochem. Photobiol. Sci. 14(3), 536–542 (2015)

    Article  CAS  Google Scholar 

  31. B. Krishnakumar, M. Swaminathan, Photodegradation of Acid Violet 7 with AgBr–ZnO under highly alkaline conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 99, 160–165 (2012)

    Article  CAS  Google Scholar 

  32. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. 2(11), 2319–2326 (2012)

    Article  CAS  Google Scholar 

  33. S. Geburt, M. Lorke, A.L. da Rosa, T. Frauenheim, R. Röder, T. Voss, U. Kaiser, W. Heimbrodt, C. Ronning, Intense intrashell luminescence of Eu-doped single ZnO nanowires at room temperature by implantation created Eu–Oi complexes. Nano Lett. 14(8), 4523–4528 (2014)

    Article  CAS  Google Scholar 

  34. S. Ji, L. Yin, G. Liu, L. Zhang, C. Ye, Synthesis of rare earth ions-doped ZnO nanostructures with efficient host-guest energy transfer. J. Phys. Chem. C 113(37), 16439–16444 (2009)

    Article  CAS  Google Scholar 

  35. S. Anandan, M. Miyauchi, Ce-doped ZnO (Ce x Zn 1–x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu 2+) grafting. Phys. Chem. Chem. Phys. 13(33), 14937–14945 (2011)

    Article  CAS  Google Scholar 

  36. R.K. Kalaiezhily, G. Saravanan, V. Asvini, N. Vijayan, K. Ravichandran, Tuning violet to green emission in luminomagnetic Dy, Er co-doped ZnO nanoparticles. Ceram. Int. 44(16), 19560–19569 (2018)

    Article  CAS  Google Scholar 

  37. M. Xin, Effect of Eu doping on the structure, morphology and luminescence properties of ZnO submicron rod for white LED applications. J. Theor. Appl. Phys. 12(3), 177–182 (2018)

    Article  Google Scholar 

  38. M. Ahmad, E. Ahmed, F. Zafar, N.R. Khalid, N.A. Niaz, A. Hafeez, M. Ikram, M.A. Khan, H.O.N.G. Zhanglian, Enhanced photocatalytic activity of Ce-doped ZnO nanopowders synthesized by combustion method. J. Rare Earths 33(3), 255–262 (2015)

    Article  CAS  Google Scholar 

  39. V. Vaiano, M. Matarangolo, O. Sacco, D. Sannino, Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Catal. B 209, 621–630 (2017)

    Article  CAS  Google Scholar 

  40. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci. 274, 273–281 (2013)

    Article  CAS  Google Scholar 

  41. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13(4), 697–704 (2013)

    Article  Google Scholar 

  42. M. Ahmad, Z. Hong, E. Ahmed, N.R. Khalid, A. Elhissi, W. Ahmad, Effect of fuel to oxidant molar ratio on the photocatalytic activity of ZnO nanopowders. Ceram. Int. 39(3), 3007–3015 (2013)

    Article  CAS  Google Scholar 

  43. M. Ahmad, Z. Iqbal, Z. Hong, J. Yang, Y. Zhang, N.R. Khalid, E. Ahmed, Enhanced sunlight photocatalytic performance of hafnium doped ZnO nanoparticles for methylene blue degradation. Integr. Ferroelectr. 145(1), 108–114 (2013)

    Article  CAS  Google Scholar 

  44. M. Ahmad, E. Ahmed, N. Khalid, M. Jackson, W. Ahmed, Synthesis and characterization of hexagonal shaped nanocrystalline zinc oxide powders. Int. J. Manuf. Mater. Mech. Eng. (IJMMME) 2(2), 61–76 (2012)

    Google Scholar 

  45. M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy. Compd. 577, 717–727 (2013)

    Article  CAS  Google Scholar 

  46. M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. 21(2), 761–773 (2014)

    Article  CAS  Google Scholar 

  47. M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong, N.R. Khalid, Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceram. Int. 40(7), 10085–10097 (2014)

    Article  CAS  Google Scholar 

  48. M. Ahmad, E. Ahmed, Z.L. Hong, Z. Iqbal, N.R. Khalid, T. Abbas, I. Ahmad, A.M. Elhissi, W. Ahmed, Structural, optical and photocatalytic properties of hafnium doped zinc oxide nanophotocatalyst. Ceram. Int. 39(8), 8693–8700 (2013)

    Article  CAS  Google Scholar 

  49. M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 285, 702–712 (2013)

    Article  CAS  Google Scholar 

  50. X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C 119(35), 20544–20554 (2015)

    Article  CAS  Google Scholar 

  51. M.S. Hassan, M.S. Akhtar, K.B. Shim, O.B. Yang, Morphological and electrochemical properties of crystalline praseodymium oxide nanorods. Nanoscale Res. Lett. 5(4), 735 (2010)

    Article  CAS  Google Scholar 

  52. M.H. Wang, Z.Y. Zhao, T.T. Liu, Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study. J. Alloy Compd. 621, 220–224 (2015)

    Article  CAS  Google Scholar 

  53. H. He, H.X. Dai, K.W. Wong, C.T. Au, RE0. 6Zr0. 4 − xYxO2 (RE = Ce, Pr; x = 0, 0.05) solid solutions: an investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties. Appl. Catal. A Gen. 251(1), 61–74 (2003)

    Article  CAS  Google Scholar 

  54. S. Balachandran, K. Thirumalai, M. Swaminathan, Facile hydrothermal synthesis of a highly efficient solar active Pr 6 O 11–ZnO photocatalyst and its multiple applications. RSC Adv. 4(53), 27642–27653 (2014)

    Article  CAS  Google Scholar 

  55. A. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 22, 371–381 (2015)

    Article  CAS  Google Scholar 

  56. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces. 4(5), 2717–2725 (2012)

    Article  CAS  Google Scholar 

  57. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C 117(51), 27023–27030 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Akhtar, M.S., Ahmed, E. et al. Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photocatalytic activity. J Mater Sci: Mater Electron 31, 1084–1093 (2020). https://doi.org/10.1007/s10854-019-02620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02620-2

Navigation