Skip to main content
Log in

Self-sensing feature of the ultrasonic nano-displacement actuator in Metglas/PMN-PT/Metglas magnetoelectric composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-sensing feature allows an actuator to be used as a sensor. Magnetoelectric (ME) composites consist of piezoelectric and magnetostrictive layers. ME composite is a proper candidate for the self-sensing feature in a wireless actuator due to its concurrent magnetic-charge order. In this study, the self-sensing feature of a nano-displacement ME actuator is investigated. The ME structure design, as well as the effect of geometric parameter and resonance frequency on the ME signal, is evaluated using a numerical modeling. The Metglas/PMN-PT/Metglas composite was fabricated as an ME actuator. The displacement measurement was conducted using a laser Doppler. The effect of bias field and excitation frequency on sensitivity, linearity, resolution and signal stability of actuator/sensor feature were evaluated by a magnetoelectric measurement setup. The experimental results revealed that the maximum sensitivity of actuator was achieved at the resonance frequency of about 60.7 kHz. Compared to the ME voltage, the phase angle was more reliable for application in the self-sensing feature. The actuator/sensor sensitivity was estimated at about 5.2 nm/mA and 0.64 mV/mA, respectively. Also, the output range of the sensoric feature was measured at 58–272 mV. The fatigue test revealed that the ME signal at the first resonance frequency was more stable than the second mode. The results also confirmed that the magnetoelectric signal could be promising candidate for the self-sensing feature in the ultrasonic nano-displacement actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

P:

Piezoelectric layer

M:

Magnetostrictive layer

ME:

Magnetoelectric

LDV:

Laser Doppler vibrometry

FEM:

Finite element method

FFT:

Fast Fourier transform

RMS:

Root mean square

ρ :

Density

v :

Poisson’s ratio

E :

Young modulus

C ij :

Elastic stiffness constant

σ :

Electrical conductivity

M S :

Saturation magnetization

χ :

Initial magnetic susceptibility

\(\lambda_{\text{s}}\) :

Saturation magnetostriction

\(\mu_{\text{r}}\) :

Relative permeability

\(\varepsilon_{\text{r}}\) :

Relative permittivity

T e :

Thickness

DOF:

Degree of freedom

I ac :

Excitation current

d :

Displacement

V :

Voltage

F :

Working Frequency

M B :

Bias field

S A :

Actuator sensitivity

S V :

Sensor sensitivity

L :

Linearity

N f :

Fatigue life

T :

Working temperature

References

  1. S. Yi, T. Li, Q. Zou, Active control of acoustics-caused nano-vibration in atomic force microscope imaging. Ultramicroscopy 195, 101–110 (2018)

    CAS  Google Scholar 

  2. J. Lin, D. Zhao, M. Lu, A. Yi, Modeling and analysis of a novel decoupled vibration-assisted swing cutting system for micro/nano-machining surface. IEEE Access 6, 70388–70396 (2018)

    Google Scholar 

  3. W.-L. Zhu, Z. Zhu, P. Guo, B.-F. Ju, A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics. Mech. Syst. Signal Process. 99, 747–759 (2018)

    Google Scholar 

  4. J. Deng, Y. Liu, K. Li, Q. Su, H. Yu, A novel planar piezoelectric actuator with nano-positioning ability operating in bending-bending hybrid modes. Ceram. Int. 44, S164–S167 (2018)

    CAS  Google Scholar 

  5. J. Li, H. Huang, T. Morita, Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sens. Actuators A 292, 39–51 (2019)

    Google Scholar 

  6. C. Clévy, M. Rakotondrabe, N. Chaillet, Signal Measurement and Estimation Techniques for Micro and Nanotechnology (Springer, New York, 2011)

    Google Scholar 

  7. M. Salim, D. Salim, D. Chandran, H.S. Aljibori, A.S. Kherbeet, Review of nano piezoelectric devices in biomedicine applications. J. Intell. Mater. Syst. Struct. 29(10), 2105–2121 (2018)

    CAS  Google Scholar 

  8. S. Valadkhan, Nano Positioning Control Using Magnetostrictive Actuators (UWSpace, Waterloo, 2007)

    Google Scholar 

  9. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Google Scholar 

  10. D. Huang, C. Lu, H. Bing, Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystalline soft magnetic alloy. Appl. Phys. A 120(1), 115–120 (2015)

    CAS  Google Scholar 

  11. R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26(3), 035002 (2017)

    Google Scholar 

  12. W. Huang et al., Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions. J. Phys. D 51(23), 234005 (2018)

    Google Scholar 

  13. D. Viehland, M. Wuttig, J. McCord, E. Quandt, Magnetoelectric magnetic field sensors. MRS Bull. 43(11), 834–840 (2018)

    Google Scholar 

  14. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)

    CAS  Google Scholar 

  15. S. Newacheck, G. Youssef, Synthesis and characterization of polarized novel 0–3 Terfenol-D/PVDF-TrFE composites. Composites B 172, 97–102 (2019)

    CAS  Google Scholar 

  16. G. Jian et al., Orientation dependence of magnetoelectric coefficient in 1-3–type BaTiO3/CoFe2O4. J. Magn. Magn. Mater. 449, 263–270 (2018)

    CAS  Google Scholar 

  17. M. Khodaei, A. Eshghinejad, S.A. SeyyedEbrahimi, S. Baik, Nanoscale magnetoelectric coupling study in (111)-oriented PZT-Co ferrite multiferroic nanobilayer thin film using piezoresponse force microscopy: effect of Co ferrite composition. Sens. Actuators A 242, 92–98 (2016)

    CAS  Google Scholar 

  18. M.P. Silva, P. Martins, A. Lasheras, J. Gutiérrez, J.M. Barandiarán, S. Lanceros-Mendez, Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites. J. Magn. Magn. Mater. 377, 29–33 (2015)

    CAS  Google Scholar 

  19. H. Palneedi et al., Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloy. Compd. 765, 764–770 (2018)

    CAS  Google Scholar 

  20. E. Freeman et al., Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field. Smart Mater. Struct. 26(8), 085038 (2017)

    Google Scholar 

  21. T.I. Muchenik, E.J. Barbero, Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Mater. Struct. 25(1), 015006 (2015)

    Google Scholar 

  22. L. Chen, Y. Wang, The effects of the soft magnetic alloys’ material characteristics on resonant magnetoelectric coupling for magnetostrictive/piezoelectric composites. Smart Mater. Struct. 28(4), 045003 (2019)

    CAS  Google Scholar 

  23. R. Brito-Pereira, C. Ribeiro, S. Lanceros-Mendez, P. Martins, Magnetoelectric response on Terfenol-D/P(VDF-TrFE) two-phase composites. Compos. B 120, 97–102 (2017)

    CAS  Google Scholar 

  24. F. Fang, W.Q. Jing, Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites. AIP Adv. 6(1), 015008 (2016)

    Google Scholar 

  25. C. Li, X. Liu, W. Luo, D. Xu, K. He, Surfactant-assisted hydrothermal synthesis of PMN-PT nanorods. Nanoscale Res. Lett. 11(1), 49 (2016)

    Google Scholar 

  26. Z. Li, S. Zhou, G. Zhang, W. Zheng, Highly ductile and ultra-thick P-doped FeSiB amorphous alloys with excellent soft magnetic properties. Materials (Basel, Switzerland) 11(7), 1148 (2018)

    Google Scholar 

  27. J. Zhang et al., Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics. J. Magn. Magn. Mater. 473, 131–135 (2019)

    CAS  Google Scholar 

  28. C.-S. Park et al., Design and characterization of broadband magnetoelectric sensor. J. Appl. Phys. 105(9), 094111 (2009)

    Google Scholar 

  29. S. Hohenberger et al., Effect of double layer thickness on magnetoelectric coupling in multiferroic multilayers. J. Phys. D 51(18), 184002 (2018)

    Google Scholar 

  30. S. Li, C. Wang, Q. Shen, L. Zhang, Characterization of a BCZT/LCMO/BCZT laminated composite fabricated by plasma-activated sintering. J. Appl. Phys. 125(7), 074101 (2019)

    Google Scholar 

  31. J. Wen, J. Zhang, Y. Gao, A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites. Compos. Struct. 166, 163–176 (2017)

    Google Scholar 

  32. H. Talleb, Z. Ren, Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting. J. Alloys Compd. 615, 65–74 (2014)

    CAS  Google Scholar 

  33. D.A. Hadjiloizi, A.L. Kalamkarov, G.C. Saha, I. Christofi, A.V. Georgiades, Micromechanical modeling of thin composite and reinforced magnetoelectric plates—effective electrical, magnetic, thermal and product properties. Compos. B 113, 243–269 (2017)

    Google Scholar 

  34. S.Z. Mansour, R. Seethaler, Displacement and force self-sensing technique for piezoelectric actuators using a nonlinear constitutive model. IEEE Trans. Industr. Electron. (2019). https://doi.org/10.1109/tie.2018.2890486

    Article  Google Scholar 

  35. J. Bafumba Liseli, J. Agnus, P. Lutz, M. Rakotondrabe, Optimal design of piezoelectric cantilevered actuators for charge-based self-sensing applications. Sensors 19(11), 2582 (2019)

    Google Scholar 

  36. H. Ikeda, T. Morita, High-precision positioning using a self-sensing piezoelectric actuator control with a differential detection method. Sens. Actuators A 170(1), 147–155 (2011)

    CAS  Google Scholar 

  37. K. Saigusa, T. Morita, Self-sensing control of piezoelectric positioning stage by detecting permittivity. Sens. Actuators A 226, 76–80 (2015)

    CAS  Google Scholar 

  38. T.-F. Lu, Y. Fan, T. Morita, An investigation of piezoelectric actuator high speed operation for self-sensing. Measurement 136, 105–115 (2019)

    Google Scholar 

  39. I.A. Ivan, O. Aljanaideh, J. Agnus, P. Lutz, M. Rakotondrabe, Quasi-static displacement self-sensing measurement for a 2-DOF piezoelectric cantilevered actuator. IEEE Trans. Industr. Electron. 64(8), 6330–6337 (2017)

    Google Scholar 

  40. R. Varghese et al., Magnetostriction measurement in thin films using laser Doppler vibrometry. J. Magn. Magn. Mater. 363, 179–187 (2014)

    CAS  Google Scholar 

  41. Y. Yang, B. Yang, M. Niu, Dynamic/static displacement sensor based on magnetoelectric composites. Appl. Phys. Lett. 113(3), 032903 (2018)

    Google Scholar 

  42. M. Sadeghi, Y. Hojjat, M. Khodaei, Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm. J. Mater. Sci.: Mater. Electron. 30(17), 16527–16538 (2019)

    CAS  Google Scholar 

  43. L. Chen, P. Li, Y.M. Wen, Y. Zhu, Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites. Chin. Phys. B 22(7), 1–5 (2013)

    Google Scholar 

  44. S.W. Sung, J. Lee, I.B. Lee, Process Identification and PID Control (Wiley, New York, 2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Yumei Wen and Prof. Ping Li (Lab of sensor and Instrument system, Electronic Department, Shanghai Jiao Tong University, Shanghai, China) for their technical support in manufacturing, characterization and measurements of the magnetoelectric actuator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hojjat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Hojjat, Y. & Khodaei, M. Self-sensing feature of the ultrasonic nano-displacement actuator in Metglas/PMN-PT/Metglas magnetoelectric composite. J Mater Sci: Mater Electron 31, 740–751 (2020). https://doi.org/10.1007/s10854-019-02581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02581-6

Navigation