Skip to main content
Log in

Role of electrolyte at the interface and in the dispersion of graphene in organic solvents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical exfoliation of graphene is a very useful technique to prepare highly conductive graphene with a low defect level. However, low dispersion stability is a barrier to this process being used to prepare graphene directly in a wide range of applications. Even though the dispersion stability and concentration of graphene are important, the reasons for the lower dispersion stability and lower concentration of electrochemically exfoliated graphene have not yet been clarified. In this study, we identified that the strong electrostatic attractive interaction between charged ions from electrolytes at the interfaces of graphene layers substantially deteriorated the dispersion stability. Both the stability and the concentration of graphene dispersions were substantially enhanced upon removal of the residual electrolytes from the organic solvents used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.-H. Wee, W.-H. Khoh, A.K. Sarker, C.-H. Lee, J.-D. Hong, A high-performance moisture sensor based on ultralarge graphene oxide. Nanoscale 7, 17805–17811 (2015). https://doi.org/10.1039/C5NR05726D

    Article  CAS  Google Scholar 

  2. V. León, A.M. Rodriguez, P. Prieto, M. Prato, E. Vázquez, Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8, 563–571 (2014). https://doi.org/10.1021/nn405148t

    Article  CAS  Google Scholar 

  3. R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013). https://doi.org/10.1039/C2NR32629A

    Article  CAS  Google Scholar 

  4. Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.-M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1756–1760 (2009). https://doi.org/10.1002/adma.200802560

    Article  CAS  Google Scholar 

  5. J.I. Paredes, J.M. Munuera, Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods. J. Mater. Chem. A 5, 7228–7242 (2017). https://doi.org/10.1039/C7TA01711A

    Article  CAS  Google Scholar 

  6. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio, M.A. Pimenta, Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon N. Y. 46, 272–275 (2008). https://doi.org/10.1016/J.CARBON.2007.11.015

    Article  Google Scholar 

  7. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009). https://doi.org/10.1021/nl803798y

    Article  CAS  Google Scholar 

  8. H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. (2008). https://doi.org/10.1021/JA076473O

    Article  Google Scholar 

  9. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010). https://doi.org/10.1002/adma.200903689

    Article  CAS  Google Scholar 

  10. H.-X. Wang, Q. Wang, K.-G. Zhou, H.-L. Zhang, Graphene in light: design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9, 1266–1283 (2013). https://doi.org/10.1002/smll.201203040

    Article  CAS  Google Scholar 

  11. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009). https://doi.org/10.1038/nnano.2008.329

    Article  CAS  Google Scholar 

  12. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010). https://doi.org/10.1038/nchem.686

    Article  CAS  Google Scholar 

  13. A. Ciesielski, P. Samorì, Grapheneviasonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014). https://doi.org/10.1039/C3CS60217F

    Article  CAS  Google Scholar 

  14. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015). https://doi.org/10.1039/C5TA00252D

    Article  CAS  Google Scholar 

  15. H. Shima, M.M. Hossain, J.R. Hahn, Highly dispersed graphene ribbons produced from ZnO–C core–shell nanorods and their use as a filler in polyimide composites. RSC Adv. 4, 41204–41211 (2014). https://doi.org/10.1039/C4RA06782G

    Article  CAS  Google Scholar 

  16. S. Liang, Z. Shen, M. Yi, L. Liu, X. Zhang, S. Ma, In-situ exfoliated graphene for high-performance water-based lubricants. Carbon N. Y. 96, 1181–1190 (2016). https://doi.org/10.1016/J.CARBON.2015.10.077

    Article  CAS  Google Scholar 

  17. S. Wang, M. Yi, Z. Shen, The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Adv. 6, 56705–56710 (2016). https://doi.org/10.1039/C6RA10933K

    Article  CAS  Google Scholar 

  18. M. Yi, Z. Shen, Kitchen blender for producing high-quality few-layer graphene. Carbon N. Y. 78, 622–626 (2014). https://doi.org/10.1016/J.CARBON.2014.07.035

    Article  CAS  Google Scholar 

  19. M. Yi, Z. Shen, S. Liang, L. Liu, X. Zhang, S. Ma, Water can stably disperse liquid-exfoliated graphene. Chem. Commun. 49, 11059 (2013). https://doi.org/10.1039/c3cc46457a

    Article  CAS  Google Scholar 

  20. L. Liu, Z. Shen, M. Yi, X. Zhang, S. Ma, A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv. 4, 36464–36470 (2014). https://doi.org/10.1039/C4RA05635C

    Article  CAS  Google Scholar 

  21. M. Yi, Z. Shen, J. Zhu, A fluid dynamics route for producing graphene and its analogues. Chin. Sci. Bull. 59, 1794–1799 (2014). https://doi.org/10.1007/s11434-014-0303-9

    Article  CAS  Google Scholar 

  22. M. Yi, Z. Shen, X. Zhang, S. Ma, Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J. Phys. D 46, 025301 (2013). https://doi.org/10.1088/0022-3727/46/2/025301

    Article  CAS  Google Scholar 

  23. M.M. Hossain, H. Shima, I. Lee, J.R. Hahn, In situ preparation of graphene-ZnO composites for enhanced graphite exfoliation and graphene-nylon-6 composite films. J. Appl. Polym. Sci. 134, 45034 (2017). https://doi.org/10.1002/app.45034

    Article  CAS  Google Scholar 

  24. M.M. Hossain, J.R. Hahn, B.C. Ku, Synthesis of highly dispersed and conductive graphene sheets by exfoliation of preheated graphite in a sealed bath and its applications to polyimide nanocomposites. Bull. Korean Chem. Soc. (2014). https://doi.org/10.5012/bkcs.2014.35.7.2049

    Article  Google Scholar 

  25. M.M. Hossain, O.-K. Park, J.R. Hahn, B.-C. Ku, High yield and high concentration few-layer graphene sheets using solvent exfoliation of graphite with pre-thermal treatment in a sealed bath. Mater. Lett. 123, 90–92 (2014). https://doi.org/10.1016/J.MATLET.2014.03.024

    Article  CAS  Google Scholar 

  26. J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46, 14–22 (2013). https://doi.org/10.1021/ar300009f

    Article  CAS  Google Scholar 

  27. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008). https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  28. C.-J. Shih, S. Lin, M.S. Strano, D. Blankschtein, Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J. Am. Chem. Soc. 132, 14638–14648 (2010). https://doi.org/10.1021/ja1064284

    Article  CAS  Google Scholar 

  29. A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009). https://doi.org/10.1021/nl902200b

    Article  CAS  Google Scholar 

  30. M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010). https://doi.org/10.1021/nn1005304

    Article  CAS  Google Scholar 

  31. D. Ager, V. Arjunan Vasantha, R. Crombez, J. Texter, Aqueous graphene dispersions–optical properties and stimuli-responsive phase transfer. ACS Nano 8, 11191–11205 (2014). https://doi.org/10.1021/nn502946f

    Article  CAS  Google Scholar 

  32. A.S. Wajid, S. Das, F. Irin, H.S.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, M.J. Green, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon N. Y. 50, 526–534 (2012). https://doi.org/10.1016/J.CARBON.2011.09.008

    Article  CAS  Google Scholar 

  33. P. May, U. Khan, J.M. Hughes, J.N. Coleman, Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012). https://doi.org/10.1021/jp302365w

    Article  CAS  Google Scholar 

  34. V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, A. Yu, High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication. Sci. Rep. 3, 1378 (2013). https://doi.org/10.1038/srep01378

    Article  CAS  Google Scholar 

  35. S. Das, F. Irin, H.S. Tanvir Ahmed, A.B. Cortinas, A.S. Wajid, D. Parviz, A.F. Jankowski, M. Kato, M.J. Green, Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polym. (Guildf) 53, 2485–2494 (2012). https://doi.org/10.1016/J.POLYMER.2012.03.012

    Article  CAS  Google Scholar 

  36. L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N. Y. 49, 1653–1662 (2011). https://doi.org/10.1016/J.CARBON.2010.12.049

    Article  CAS  Google Scholar 

  37. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon N. Y. 48, 4466–4474 (2010). https://doi.org/10.1016/J.CARBON.2010.08.006

    Article  CAS  Google Scholar 

  38. P. He, J. Sun, S. Tian, S. Yang, S. Ding, G. Ding, X. Xie, M. Jiang, Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015). https://doi.org/10.1021/cm503782p

    Article  CAS  Google Scholar 

  39. T.C. Achee, W. Sun, J.T. Hope, S.G. Quitzau, C.B. Sweeney, S.A. Shah, T. Habib, M.J. Green, High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-32741-3

    Article  Google Scholar 

  40. A. Ejigu, L.W. Le Fevre, K. Fujisawa, M. Terrones, A.J. Forsyth, R.A.W. Dryfe, Electrochemically exfoliated graphene electrode for high-performance rechargeable chloroaluminate and dual-ion batteries. ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b06528

    Article  Google Scholar 

  41. K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  42. C.Y. Lee, D.R.G. Mitchell, P. Molino, A. Fahy, G.G. Wallace, Tunable solution-processable anodic exfoliated graphene. Appl. Mater. Today 15, 290–296 (2019). https://doi.org/10.1016/j.apmt.2019.02.008

    Article  Google Scholar 

  43. Y.Z.N. Htwe, W.S. Chow, Y. Suda, A.A. Thant, M. Mariatti, Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl. Surf. Sci. 469, 951–961 (2019). https://doi.org/10.1016/j.apsusc.2018.11.029

    Article  CAS  Google Scholar 

  44. A. Ejigu, I.A. Kinloch, R.A.W. Dryfe, Single stage simultaneous electrochemical exfoliation and functionalization of graphene. ACS Appl. Mater. Interfaces 9, 710–721 (2017). https://doi.org/10.1021/acsami.6b12868

    Article  CAS  Google Scholar 

  45. K. Parvez, R.A. Rincón, N.-E. Weber, K.C. Cha, S.S. Venkataraman, One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide. Chem. Commun. 52, 5714–5717 (2016). https://doi.org/10.1039/C6CC01250G

    Article  CAS  Google Scholar 

  46. Z. Liu, Z.-S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28, 2217–2222 (2016). https://doi.org/10.1002/adma.201505304

    Article  CAS  Google Scholar 

  47. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. A 22, 153–159 (2016). https://doi.org/10.1002/chem.201503110

    Article  CAS  Google Scholar 

  48. H.M. Yadav, J.-S. Kim, Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance, J. Alloys Compd. 688, 123–129 (2016). https://www.sciencedirect.com/science/article/pii/S0925838816321697. Accessed 8 Sept 2016

    Article  CAS  Google Scholar 

  49. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using raman spectroscopy. Materials (Basel, Switzerland) (2018). https://doi.org/10.3390/ma11071050

    Article  Google Scholar 

  50. A. Ilnicka, M. Skorupska, P. Kamedulski, J.P. Lukaszewicz, Electro-exfoliation of graphite to graphene in an aqueous solution of inorganic salt and the stabilization of its sponge structure with poly(furfuryl alcohol). Nanomaterials (Basel, Switzerland) (2019). https://doi.org/10.3390/nano9070971

    Article  Google Scholar 

  51. K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci. 436, 41–46 (2014). https://doi.org/10.1016/j.jcis.2014.08.057

    Article  CAS  Google Scholar 

  52. C.E. Hamilton, J.R. Lomeda, Z. Sun, J.M. Tour, A.R. Barron, High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9, 3460–3462 (2009). https://doi.org/10.1021/nl9016623

    Article  CAS  Google Scholar 

  53. L. Xu, J.-W. McGraw, F. Gao, M. Grundy, Z. Ye, Z. Gu, J.L. Shepherd, Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ethylene copolymer composites. J. Phys. Chem. C 117, 10730–10742 (2013). https://doi.org/10.1021/jp4008009

    Article  CAS  Google Scholar 

  54. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009). https://doi.org/10.1021/ja807449u

    Article  CAS  Google Scholar 

  55. S. Barwich, U. Khan, J.N. Coleman, A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration. J. Phys. Chem. C 117, 19212–19218 (2013). https://doi.org/10.1021/jp4047006

    Article  CAS  Google Scholar 

  56. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation, funded by the Ministry of Science, ICT & Future Planning (Grant NRF-2016M1A2A2940912 and NRF-2015M1A2A2054996). This work was also supported by the Dongguk University Research Fund of 2017 and 2019 (S-2019-G0001-00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Joon Lee.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.M., Lee, S.Y., Yadav, H.M. et al. Role of electrolyte at the interface and in the dispersion of graphene in organic solvents. J Mater Sci: Mater Electron 31, 404–413 (2020). https://doi.org/10.1007/s10854-019-02542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02542-z

Navigation