Skip to main content
Log in

Impact of CNT on structural, thermal, and dielectric properties of the multicomponent Cu5Se75Te10In10 chalcogenide glassy system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multicomponent MWCNT-added glasses of the [(Cu5Se75Te10In10)100−x(CNT)x] (x = 0, 1, and 2) system have been developed by a cost-effective melt-quench method that is also known for its convenience. Structural properties have been studied using XRD and FESEM. Differential Scanning Calorimetry scan has been done at a heating rate of 10 K/min which also confirms the glassy nature of the as-prepared and MWCNT-added Cu5Se75Te10In10 composite. The effect of CNTs on transition temperatures, thermal characteristics such as thermal stability and Glass-forming stability has been discussed. The variations of dielectric relaxation of this new composite with temperature and frequency have been investigated from room temperature up to 373 K and frequency regime from 1 Hz to 1 MHz. Moreover, it is also observed that dielectric constant and dielectric loss reduces sharply at the high-frequency side but increases with increase in CNT concentration as well as temperature. The highest dielectric constant value (2000) for 2 wt% MWCNT/Cu5Se75Te10In10 at low temperatures and the low-frequency regime is approximately ten times greater than the host glassy composite Cu5Se75Te10In10 was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    CAS  Google Scholar 

  2. M. Pollak, (Institute of Physics and Physical Society, London, 1962)

  3. M. Pollak, Philos. Mag. 23, 542 (1971)

    Google Scholar 

  4. A.H. Khafogy, M.S. Abo-Ghazala, M.M. El-Zaidia, A.A. El-Shourbagy, J. Non-Cryst. Solids 278, 127 (2000)

    Google Scholar 

  5. J.Y. Shim, S.W. Park, H.K. Baik, Thin Solid Films 292, 31 (1997)

    CAS  Google Scholar 

  6. N. Kushwaha, V.S. Kushwaha, R.K. Shukla, A. Kumar, J. Non-Cryst, Solids 351, 3414 (2005)

    CAS  Google Scholar 

  7. J.M. Saitar, J. Ledru, A. Hamou, G. Saffarini, Phys. B 245, 256 (1998)

    Google Scholar 

  8. K. Kobashi, T. Villmow, T. Andres, L. Haußler, P. Potschke, Smart Mater. Struct. 18, 035008 (2009)

    Google Scholar 

  9. M. Saremi, Solid State Ion. 290, 1 (2016)

    CAS  Google Scholar 

  10. M. Saremi, H.J. Barnaby, A. Edwards, M.N. Kozick, ECS Electrochem. Lett. 4, H29–H31 (2015)

    CAS  Google Scholar 

  11. S. Rajabi, M. Saremi, H.J. Barnaby, A. Edwards, M.N. Kozicki, M. Mitkova, D. Mahalanabis, Y. Gonzalez-Velo, A. Mahmud, Solid-State Electron. 106, 27 (2015)

    CAS  Google Scholar 

  12. M. Saremi, S. Rajabi, H.J. Barnaby, M.N. Kozicki, MRS Proc. 1692, 9–39 (2014)

    Google Scholar 

  13. M. Pumera, S. Sanchez, I. Ichinose, J. Tang, Sens. Actuator. B123, 1195 (2007)

    Google Scholar 

  14. O.L. Kheifets-Kobeleva, V.B. Zlokazov, N.V. Melnikova, L.L. Nugaeva, L.Y. Kobelev, Y.L. Kobelev, Electr. Phys. Status Solidi. 1(2), 299 (2004)

    Google Scholar 

  15. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York, 2011)

    Google Scholar 

  16. Y. Cao, M. Bernechea, A. Maclachlan, V. Zardetto, M. Creatore, S.A. Haque, G. Konstantatos, Chem. Mater. 27, 3700 (2015)

    CAS  Google Scholar 

  17. A.B. Gadkari, J.K. Zope, J. Non-Cryst. Solids 103, 295 (1988)

    CAS  Google Scholar 

  18. R. Chinnusamy, Acta Metall. Sin. 28, 567 (2015)

    CAS  Google Scholar 

  19. A.N. Upadhyay, R.S. Tiwari, N. Mehta, K. Singh, Mater. Lett. 136, 445 (2014)

    CAS  Google Scholar 

  20. A.N. Upadhyay, K. Singh, Mater. Res. Express. 3, 125201 (2016)

    Google Scholar 

  21. S. Stehlik, J. Orava, T. Kohoutek, T. Wagner, M. Frumar, V. Zima, T. Hara, Y. Matsui, K. Ueda, M. Pumera, J. Solid State Chem. 183, 144 (2010)

    CAS  Google Scholar 

  22. P.M. Ajayan, M. Tour James, Nature 447, 1066 (2007)

    CAS  Google Scholar 

  23. M. Ganaie, M. Zulfequar, Mater. Chem. Phys. 177, 455 (2016)

    CAS  Google Scholar 

  24. P. Jaiswal, D.K. Dwivedi, Mater. Res. Express. 6, 015202 (2018)

    Google Scholar 

  25. H.E. Atyia, J. Non-Cryst. Solids 391, 83 (2014)

    CAS  Google Scholar 

  26. S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, J. Qiu, Adv. Mater. 26, 7966 (2014)

    CAS  Google Scholar 

  27. G.C. Das, M.B. Bewer, D.R. Uhlmann, J. Non-Cryst. Solids 7, 251 (1972)

    CAS  Google Scholar 

  28. G. Lucovsky, J. Non-Cryst. Solids 97–98, 155 (1987)

    Google Scholar 

  29. A. Eisenberg, J. Polym. Sci. B 1, 177 (1963)

    Google Scholar 

  30. S. Mahadevan, A. Giridhar, A.K. Singh, J. Non-Cryst. Solids 88, 11 (1986)

    CAS  Google Scholar 

  31. A. Giridhar, S. Mahadevan, J. Non-Cryst. Solids 151, 245 (1992)

    CAS  Google Scholar 

  32. S.R. Joshi, A. Pratap, N.S. Saxena, M.P. Saxena, J. Mater. Sci. Lett. 13, 77 (1994)

    CAS  Google Scholar 

  33. T.F. Scott, W.D. Cook, J.S. Forsythe, Eur. Polym. J. 38, 705 (2002)

    CAS  Google Scholar 

  34. N.M. Alves, J.L.G. Ribelle, J.F. Mano, Polymer 46, 491 (2005)

    CAS  Google Scholar 

  35. T. Sasaki, T. Uchida, K. Sakurai, J. Polym. Sci. B 44, 1958 (2006)

    CAS  Google Scholar 

  36. P. Jaiswal, D.K. Dwivedi, Mater. Res. Express. 6, 055203 (2019)

    CAS  Google Scholar 

  37. I.S. Ram, K. Singh, J Alloys Compd. 576, 358 (2013)

    CAS  Google Scholar 

  38. I.S. Ram, K. Singh, Phys. B 407, 3472 (2012)

    CAS  Google Scholar 

  39. E.D. Zanotto, J. Non-Cryst. Solids 74, 373 (1985)

    CAS  Google Scholar 

  40. E.D. Zanotto, J. Non-Cryst, Solids 89, 361 (1987)

    CAS  Google Scholar 

  41. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981)

    CAS  Google Scholar 

  42. A.E. Stearn, H. Eyring, J. Chem. Phys. 5, 113 (1937)

    CAS  Google Scholar 

  43. P.K. Singh, D.K. Dwivedi, Results Phys. 12, 223 (2019)

    Google Scholar 

  44. A. Upadhyay, R. Tiwari, K. Singh, Mater. Lett. 164, 449 (2016)

    CAS  Google Scholar 

  45. Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000)

    CAS  Google Scholar 

  46. Z.M. Dang, C.W. Nan, D. Xie, Y.H. Zhang, S.C. Tjong, Appl. Phys. Lett. 85, 97 (2004)

    CAS  Google Scholar 

  47. L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005)

    Google Scholar 

  48. M.J. Jiang, Z.M. Dang, H.P. Xu, Appl. Phys. Lett. 9, 042914 (2007)

    Google Scholar 

  49. Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Appl. Phys. Lett. 89, 072902 (2006)

    Google Scholar 

  50. K. Ahmad, W. Pan, S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006)

    Google Scholar 

  51. Q. Li, X. Qingzhong, H. Lanzhong, X. Gao, Q. Zheng, Compos. Sci. Technol. 68, 2290 (2008)

    CAS  Google Scholar 

  52. T.M. Stevels Handbuch der Physik, ed. by Flugged (Springer, Berlin, 1957) p. 350

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, P., Dwivedi, D.K. Impact of CNT on structural, thermal, and dielectric properties of the multicomponent Cu5Se75Te10In10 chalcogenide glassy system. J Mater Sci: Mater Electron 31, 394–403 (2020). https://doi.org/10.1007/s10854-019-02541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02541-0

Navigation