Skip to main content
Log in

Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene nano-sheets (GNSs) are considered a functional (excellent/good) material at solder alloy modification. In this study, GNSs were doped into Sn–0.7Cu solder by powder metallurgy to form Sn–0.7Cu–xGNSs (x = 0.025, 0.05, 0.075, 0.1 wt%) composite solders. The density, hardness, and electrical conductivity of the composite solders were investigated. At the same time, Potentiodynamic polarization method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were applied to analyze the electrochemical corrosion behavior of composite solders in the 3.5 wt% NaCl solution. The results revealed that as the content of GNSs increased, the hardness of composite solders decreased, but the density enhanced when compared with original Sn–0.7Cu. Simultaneously, the conductivity reached highest as the GNSs content was 0.025 wt%. Potentiodynamic polarization showed that GNSs affected the anodic reaction of the solders. The corrosion resistance of Sn–0.7Cu–0.075GNSs was better than that of other alloys. Sn3O(OH)2Cl2 and Tin oxides were the formation of the corrosion product by XPS and XRD analysis. SEM analysis confirmed that when the GNSs content was 0.075 wt%, the corrosion products were dense and the corrosion resistance of the alloy was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci.: Mater. Electron. 23, 1108 (2012)

    CAS  Google Scholar 

  2. F. Wang, D. Li, S. Tian, Z. Zhang, J. Wang, C. Yan, Microelectron. Reliab. 73, 106 (2017). https://doi.org/10.1016/j.microrel.2017.04.031

    Article  CAS  Google Scholar 

  3. S. Annuar, R. Mahmoodian, M. Hamdi, K.N. Tu, Sci. Technol. Adv. Mater. 18, 693 (2017)

    Article  Google Scholar 

  4. C.C. Lee, R.C. Cheng, Y.M. Lin et al., Microelectron. Eng. 156, 30 (2016)

    Article  CAS  Google Scholar 

  5. S. Shang, Y. Wang, Y. Wang, H. Ma, A. Kunwar, Microelectron. Eng. 208, 47 (2019). https://doi.org/10.1016/j.mee.2019.01.009

    Article  CAS  Google Scholar 

  6. A.F. Abd El-Rehim, H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017). https://doi.org/10.1016/j.jallcom.2016.11.371

    Article  CAS  Google Scholar 

  7. T.-T. Chou, R.-W. Song, W.-Y. Chen, J.-G. Duh, Mater. Lett. 235, 180 (2019). https://doi.org/10.1016/j.matlet.2018.10.050

    Article  CAS  Google Scholar 

  8. I. Dutta, B.S. Majumdar, D. Pan, W.S. Horton, W. Wright, Z.X. Wang, J. Electron. Mater. 33, 258 (2004)

    Article  CAS  Google Scholar 

  9. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R: Rep. 44, 1 (2004). https://doi.org/10.1016/j.mser.2004.01.001

    Article  CAS  Google Scholar 

  10. L. Xu, L. Wang, H. Jing, X. Liu, J. Wei, Y. Han, J. Alloys Compd. 650, 475 (2015)

    Article  CAS  Google Scholar 

  11. G. Zeng, S. Xue, Z. Liang, L. Gao, Cheminform 43, 565 (2012)

    Google Scholar 

  12. H.A. Jaffery, M.F.M. Sabri, S.M. Said et al., J. Alloys Compd. 810, 151925 (2019). https://doi.org/10.1016/j.jallcom.2019.151925

    Article  CAS  Google Scholar 

  13. H. Huang, G. Shuai, X. Wei, C. Yin, Microelectron. Reliab. 74, 15 (2017). https://doi.org/10.1016/j.microrel.2017.05.010

    Article  CAS  Google Scholar 

  14. F. Tai, F. Guo, Z-d Xia, Y-p Lei, Y-w Shi, Int. J. Miner. Metall. Mater. 16, 677 (2009). https://doi.org/10.1016/S1674-4799(10)60012-X

    Article  CAS  Google Scholar 

  15. X.L. Zhong, M. Gupta, J. Phys. D Appl. Phys. 41, 095403 (2008). https://doi.org/10.1088/0022-3727/41/9/095403

    Article  CAS  Google Scholar 

  16. A.A. Eldaly, A.E. Hammad, Mater. Des. 40, 292 (2012)

    Article  CAS  Google Scholar 

  17. X. Hu, W. Chen, B. Wu, Mater. Sci. Eng. A 556, 816 (2012)

    Article  CAS  Google Scholar 

  18. T. Ventura, S. Terzi, M. Rappaz, A.K. Dahle, Acta Mater. 59, 1651 (2011)

    Article  CAS  Google Scholar 

  19. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  20. S. Kim, P. Zhao, S. Aikawa, E. Einarsson, S. Chiashi, S. Maruyama, ACS Appl. Mater. Interfaces. 7, 9702 (2015)

    Article  CAS  Google Scholar 

  21. H.S. Song, S.L. Li, H. Miyazaki et al., Sci. Rep. 2, 337 (2012)

    Article  CAS  Google Scholar 

  22. J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, J. Ind. Eng. Chem. 66, 29 (2018). https://doi.org/10.1016/j.jiec.2018.05.028

    Article  CAS  Google Scholar 

  23. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. (2019). https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  24. L. Changgu, W. Xiaoding, J.W. Kysar, H. James, Science 321, 385 (2008)

    Article  Google Scholar 

  25. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010)

    Article  CAS  Google Scholar 

  26. Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Guo, Macromol. Chem. Phys. 212, 1951 (2011)

    Article  CAS  Google Scholar 

  27. Y. Li, J. Zhu, S. Wei et al., Macromol. Chem. Phys. 212, 2429 (2011)

    Article  CAS  Google Scholar 

  28. L. Sun, M. Xiao, J. Liu, K. Gong, Eur. Polym. J. 42, 259 (2006)

    Article  CAS  Google Scholar 

  29. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006)

    Article  CAS  Google Scholar 

  30. L. Xu, X. Chen, H. Jing, L. Wang, J. Wei, Y. Han, Mater. Sci. Eng. A 667, 87 (2016). https://doi.org/10.1016/j.msea.2016.04.084

    Article  CAS  Google Scholar 

  31. S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401 (2006)

    Article  CAS  Google Scholar 

  32. S. Xu, Y.C. Chan, K. Zhang, K. Yung, J. Alloys Compd. 595, 92 (2014)

    Article  CAS  Google Scholar 

  33. T. Yan, D. Xie, Z. Chen et al., J. Nucl. Mater. 520, 1 (2019). https://doi.org/10.1016/j.jnucmat.2019.04.005

    Article  CAS  Google Scholar 

  34. D.J. Morgan, J. Electron Spectrosc. Relat. Phenom. 231, 109 (2019). https://doi.org/10.1016/j.elspec.2017.12.008

    Article  CAS  Google Scholar 

  35. W.F. Stickle, C.N. Young, J. Electron Spectrosc. Relat. Phenom. 231, 50 (2019). https://doi.org/10.1016/j.elspec.2018.04.001

    Article  CAS  Google Scholar 

  36. Y. Fan, L. Wang, J. Li et al., Carbon 48, 1743 (2010). https://doi.org/10.1016/j.carbon.2010.01.017

    Article  CAS  Google Scholar 

  37. C. Ramirez, L. Garzón, P. Miranzo, M.I. Osendi, C. Ocal, Carbon 49, 3873 (2011). https://doi.org/10.1016/j.carbon.2011.05.025

    Article  CAS  Google Scholar 

  38. K. Wang, Y. Wang, Z. Fan, J. Yan, T. Wei, Mater. Res. Bull. 46, 315 (2011). https://doi.org/10.1016/j.materresbull.2010.11.005

    Article  CAS  Google Scholar 

  39. B. Liao, H. Cen, Z. Chen, X. Guo, Corros. Sci. 143, 347 (2018). https://doi.org/10.1016/j.corsci.2018.08.041

    Article  CAS  Google Scholar 

  40. M. Wang, J. Wang, W. Ke, Microelectron. Reliab. 73, 69 (2017). https://doi.org/10.1016/j.microrel.2017.04.017

    Article  CAS  Google Scholar 

  41. E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Prog. Surf. Sci. 88, 103 (2013). https://doi.org/10.1016/j.progsurf.2013.02.002

    Article  CAS  Google Scholar 

  42. T.-H. Chuang, C.-C. Chi, J. Alloys Compd. 480, 974 (2009). https://doi.org/10.1016/j.jallcom.2009.02.118

    Article  CAS  Google Scholar 

  43. M. Sun, X. Long, M. Dong et al., Mater. Charact. 134, 354 (2017). https://doi.org/10.1016/j.matchar.2017.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Key R&D Program of China (2016YFB0301400), the National Natural Science Foundation of China (51761002), the Guangxi Natural Science Foundation (2018GXNSFDA050008), the Training Plan of High-Level Talents of Guangxi University (2015) and open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials of Guangxi University of China (GXYSOF1809) and Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (GXYSSF1807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Yang or Yongzhong Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Lv and Wenchao Yang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yang, W., Mao, J. et al. Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy. J Mater Sci: Mater Electron 31, 202–211 (2020). https://doi.org/10.1007/s10854-019-02538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02538-9

Navigation