Skip to main content
Log in

Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, morphological, dielectric, and optical properties of europium chromite EuCrO3 prepared by conventional solid-state reaction method were investigated. X-ray diffraction analysis revealed that the sample crystallizes in an orthorhombic structure with a grain size in the range of 0.255–1.127 μm as determined from scanning electron microscopy images. The dielectric response was investigated over a wide range of frequencies at several fixed high temperatures. The material was reported to exhibit a large dielectric constant interpreted by the heterogeneous electrical response of the material consisting of grains separated by poorly conducting grain boundaries as asserted by the mean of impedance spectroscopy, and the dielectric relaxation was explained in terms of Maxwell–Wagner relaxation mechanism. The conduction mechanism is reported to be dominated by the charge carriers hopping provided by both small and large polarons. Optical absorption studies indicate that the sample acquires a direct band gap with an energy of about 2.4 eV, suggesting its interest for potential application in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.I. Bichurin, V.M. Petrov, Low Temp. Phys. 36, 544 (2010)

    Article  CAS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    CAS  Google Scholar 

  3. J.F. Scott, Nat. Mater. 6, 256–257 (2007)

    Article  CAS  Google Scholar 

  4. H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008)

    Google Scholar 

  5. V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, EPL 101, 17008 (2013)

    Article  Google Scholar 

  6. N. Shamir, M. Melamud, H. Shaked, S. Shtrikman, Physica B+C 90, 217–222 (1977)

    Article  Google Scholar 

  7. Y. Su, J. Zhang, B. Li, B. Kang, Q. Yu, C. Jing, S. Cao, Ceram. Int. 38, S421–S424 (2012)

    Article  CAS  Google Scholar 

  8. H.B. Lal, R.D. Dwivedi, K. Gaur, J. Mater. Sci.: Mater. Electron. 1, 204–208 (1990)

    CAS  Google Scholar 

  9. J.M.M. Ramírez, H.V.S. Pessoni, A. Franco Jr., F.L.A. Machado, J. Alloys Compd. 690, 315–320 (2017)

    Article  Google Scholar 

  10. D. Deng, X. Wang, J. Zheng, X. Qian, D. Yu, D. Sun, C. Jing, B. Lu, B. Kang, S. Cao, J. Zhang, J. Magn. Magn. Mater. 395, 283–288 (2015)

    Article  CAS  Google Scholar 

  11. L.H. Yin, J. Yang, P. Tong, X. Luo, C.B. Park, K.W. Shin, W.H. Song, J.M. Dai, K.H. Kim, X.B. Zhu, Y.P. Sun, J. Mater. Chem. C 4, 11198–11204 (2016)

    Article  CAS  Google Scholar 

  12. S. Kumar, I. Coondoo, M. Vasundhara, V.S. Puli, N. Panwar, Physica B 519, 69–75 (2017)

    Article  CAS  Google Scholar 

  13. S. Lei, L. Liu, C. Wang, C. Wang, D. Guo, S. Zeng, B. Cheng, Y. Xiao, L. Zhou, J. Mater. Chem. A 1, 11982 (2013)

    Article  CAS  Google Scholar 

  14. M. Taheri, F.S. Razavi, R.K. Kremer, Physica C 553, 8–12 (2018)

    Article  CAS  Google Scholar 

  15. A.K. Tripathi, H.B. Lal, J. Mater. Sci. 17, 1595–1609 (1982)

    Article  CAS  Google Scholar 

  16. Y. Bai, S.W. Wang, X. Zhang, Z.K. Zhao, Y.P. Shao, R. Yao, M.M. Yang, Y.B. Gao, Mater. Res. Express 6, 026101 (2019)

    Article  Google Scholar 

  17. D.R. Ratkovski, J.M.M. Ramírez, P.R.T. Ribeiro, H.V.S. Pessoni, A. Franco, F.L.A. Machado, J. Alloys Compd. 724, 501–506 (2017)

    Article  CAS  Google Scholar 

  18. M. Taheri, F.S. Razavi, Z. Yamani, R. Flacau, P.G. Reuvekamp, A. Schulz, R.K. Kremer, Phys. Rev. B 93, 104414 (2016)

    Article  Google Scholar 

  19. G.S. Rao, C.N.R. Rao, Appl. Spectrosc. 24, 436–444 (1970)

    Article  CAS  Google Scholar 

  20. C.Y. Liang, E.J. Schimitschek, D.H. Stephens, J.A. Trias, J. Chem. Phys. 46, 1588–1593 (1967)

    Article  CAS  Google Scholar 

  21. A. Taitai, J.L. Lacout, J. Phys. Chem. Solids 48, 629–633 (1987)

    Article  CAS  Google Scholar 

  22. S. Vahur, A. Teearu, I. Leito, Spectrochim. Acta A 75, 1061–1072 (2010)

    Article  Google Scholar 

  23. F. Farzaneh, M. Najafi, J. Sci. 22, 329–333 (2011)

    CAS  Google Scholar 

  24. A.K. Jonscher, IEEE Trans. Electr. Insul. 27, 407–423 (1992)

    Article  Google Scholar 

  25. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  26. A.K. Jonscher, J. Mater. Sci. 13, 553–562 (1978)

    Article  CAS  Google Scholar 

  27. K. Funke, J. Solid State Ion. 22, 111–195 (1993)

    CAS  Google Scholar 

  28. V.L. Mathe, K.K. Patankar, S.D. Lotke, P.B. Joshi, S.A. Patil, Bull. Mater. Sci. 25, 347–350 (2002)

    Article  CAS  Google Scholar 

  29. A. Peláiz-Barranco, M.P. Gutiérrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039–2041 (1998)

    Article  Google Scholar 

  30. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  Google Scholar 

  31. J. Daniels, K.H. Hardtl, Philips Res. Rep. 31, 489–504 (1976)

    CAS  Google Scholar 

  32. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)

    Article  Google Scholar 

  33. J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51, 1473–1479 (2006)

    Article  CAS  Google Scholar 

  34. J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  35. V.S. Vavilov, Phys.-Uspekhi 37, 269 (1994)

  36. K.D. Singh, R. Pandit, R. Kumar, Solid State Sci. 85, 70–75 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Boudad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudad, L., Taibi, M., Belayachi, A. et al. Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3. J Mater Sci: Mater Electron 31, 354–360 (2020). https://doi.org/10.1007/s10854-019-02533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02533-0

Navigation