Skip to main content
Log in

Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuSbS2 thin films were fabricated by spray pyrolysis from metal chloride aqueous solutions, followed by a post-deposition sulfurization step. The structural, chemical, optical and electrical properties of CuSbS2 and the effect of various sulfurization temperatures on CuSbS2 thin film have been systematically studied. We used a two-step sulfurization method. Step 1 at lower temperature was to encourage complete saturation of the as-deposited film with sulfur vapor. And step 2 at higher temperature was to promote the formation and crystallization of CuSbS2. The sulfurization temperature of step 2 is very important for the formation of device-grade CuSbS2 films. With the increase in sulfurization temperature, impurities such as Sb2S3 decreased and the crystallinity of CuSbS2 improved. Until 400 °C, impurities disappeared and phase-pure well-crystallinity CuSbS2 thin films were obtained. When the sulfurization temperature is higher than 400 °C, CuSbS2 gradually changes to Cu3SbS4. The CuSbS2 films sulfurized at 400 °C with optimum band gap of 1.53 eV are p type, and absorption coefficient is larger than 105 cm−1 in the visible light wavelength range. The temperature dependence of electrical conductivity of CuSbS2 has been studied for the first time. At measurement temperatures higher than 140 K the electrical conductivity of the CuSbS2 film is dominated by band conduction and nearest neighbor hopping (NNH). However, at temperatures below 140 K the conduction is predominantly affected by variable range hopping (VRH). Finally, thin-film solar cells based on the sprayed CuSbS2 absorber layers with a maximum photoelectric conversion efficiency of 0.34% have been fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.W. de Souza Lucas, A. Zakutayev, APL Mater. 6, 084501 (2018)

    Article  Google Scholar 

  2. J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y. Li, J. Dai, J. Solid State Chem. 182, 259–264 (2009)

    Article  CAS  Google Scholar 

  3. A.C. Rastogi, N.R. Janardhana, Thin Solid Films 565, 285–292 (2014)

    Article  CAS  Google Scholar 

  4. T. Rath, A.J. MacLachlan, M.D. Brown, S.A. Haque, J. Mater. Chem. A 3, 24155–24162 (2015)

    Article  CAS  Google Scholar 

  5. I. Grigas, N.N. Mozgova, A. Orlyukas, V. Samulenis, Sov. Phys. Crystallogr. 20, 741–742 (1976)

    Google Scholar 

  6. A. Nagaoka, K. Yoshino, Growth of CZTS single crystals, in Copper Zinc Tin Sulfide-based Thin-film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 135–137

    Google Scholar 

  7. S. Adachi, Physical properties: compiled experimental data, in Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 152–155

    Google Scholar 

  8. W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, Thin Solid Films 550, 700–704 (2014)

    Article  CAS  Google Scholar 

  9. A.W. Welch, L.L. Baranowski, P. Zawadzki, C. DeHart, S. Johnston, S. Lany, C.A. Wolden, A. Zakutayev, Prog. Photovoltaics Res. Appl. 24, 929–939 (2016)

    Article  CAS  Google Scholar 

  10. F.W. de Souza Lucas, A.W. Welch, L.L. Baranowski, P.C. Dippo, H. Hempel, T. Unold, R. Eichberger, B. Blank, U. Rau, L.H. Mascaro, A. Zakutayev, J. Phys. Chem. C 120, 18377–18385 (2016)

    Article  Google Scholar 

  11. A.D. Saragih, D.-H. Kuo, T.T.A. Tuan, J. Mater. Sci. 28, 2996–3003 (2017)

    CAS  Google Scholar 

  12. S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Sol. Energy Mater. Sol. Cells 151, 14–23 (2016)

    Article  CAS  Google Scholar 

  13. B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, Chem. Mater. 26, 3135–3143 (2014)

    Article  CAS  Google Scholar 

  14. Y. Xu, Q. Ye, W. Chen, X. Pan, L. Hu, S. Yang, T. Hayat, A. Alsaedi, J. Zhu, S. Dai, J. Mater. Sci. 53, 2016–2025 (2018)

    Article  CAS  Google Scholar 

  15. L. Wan, C. Ma, K. Hu, R. Zhou, X. Mao, S. Pan, L.H. Wong, J. Xu, J. Alloys Compd. 680, 182–190 (2016)

    Article  CAS  Google Scholar 

  16. M.I. Medina-Montes, E. Campos-González, M. Morales-Luna, T.G. Sánchez, M. Becerril-Silva, S.A. Mayén-Hernández, F. de Moure-Flores, J. Santos-Cruz, Mater. Sci. Semicond. Process. 80, 74–84 (2018)

    Article  CAS  Google Scholar 

  17. Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 152, G635 (2005)

    Article  Google Scholar 

  18. B. Krishnan, S. Shaji, R. Ernesto Ornelas, J. Mater. Sci. Mater. Electron. 26, 4770–4781 (2015)

    Article  CAS  Google Scholar 

  19. C. Macías, S. Lugo, Á. Benítez, I. López, B. Kharissov, A. Vázquez, Y. Peña, Mater. Res. Bull. 87, 161–166 (2017)

    Article  Google Scholar 

  20. V. Vinayakumar, S. Shaji, D. Avellaneda, T.K. Das Roy, G.A. Castillo, J.A.A. Martinez, B. Krishnan, Sol. Energy Mater. Sol. Cells 164, 19–27 (2017)

    Article  CAS  Google Scholar 

  21. S.C. Riha, A.A. Koegel, J.D. Emery, M.J. Pellin, A.B.F. Martinson, A.C.S. Appl, Mater. Interfaces 9, 4667–4673 (2017)

    Article  CAS  Google Scholar 

  22. S. Liu, L. Chen, L. Nie, X. Wang, R. Yuan, Chalcogenide Lett. 11, 639–644 (2014)

    CAS  Google Scholar 

  23. I. Popovici, A. Duta, Int J Photoenergy. (2012). https://doi.org/10.1155/2012/962649

    Article  Google Scholar 

  24. C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 18, 434–452 (2010)

    Article  CAS  Google Scholar 

  25. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy Environ. Sci. 7, 2944–2950 (2014)

    Article  CAS  Google Scholar 

  26. R. Zhou, Z. Yang, J. Xu, G. Cao, Coord. Chem. Rev. 374, 279–313 (2018)

    Article  CAS  Google Scholar 

  27. F. Aziz, A.F. Ismail, Mater. Sci. Semicond. Process. 39, 416–425 (2015)

    Article  CAS  Google Scholar 

  28. S.S. Chen, L. Brown, M. Levendorf, W.W. Cai, S.Y. Ju, J. Edgeworth, X.S. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J.Y. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321–1327 (2011)

    Article  CAS  Google Scholar 

  29. R.E. Ornelas-Acosta, D. Avellaneda, S. Shaji, G.A. Castillo, T.K. Das Roy, B. Krishnan, J. Mater. Sci. Mater. Electron. 25, 4356–4362 (2014)

    Article  CAS  Google Scholar 

  30. G.H. Albuquerque, K.-J. Kim, J.I. Lopez, A. Devaraj, S. Manandhar, Y.-S. Liu, J. Guo, C.-H. Chang, G.S. Herman, J. Mater. Chem. A 6, 8682–8692 (2018)

    Article  CAS  Google Scholar 

  31. J.Y.W. Seto, J. Appl. Phys. 46, 5247–5254 (1975)

    Article  CAS  Google Scholar 

  32. S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Sol. Energy 122, 508–516 (2015)

    Article  CAS  Google Scholar 

  33. F.W. de Souza Lucas, H. Peng, S. Johnston, P.C. Dippo, S. Lany, L.H. Mascaro, A. Zakutayev, J. Mater. Chem. A 5, 21986 (2017)

    Article  Google Scholar 

  34. J.C. Gonzalez, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salome, K. Gutierrez, A. Abelenda, F.M. Matinaga, J.P. Leitao, A.F. da Cunha, J. Phys. D 46, 155107 (2013)

    Article  Google Scholar 

  35. D.K. Paul, S.S. Mitra, Phys. Rev. Lett. 31, 1000–1003 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. JZ2017HGTB0192), the National Natural Science Foundation of China (Nos. 51302057, 51602088), the Natural Science Foundation of Anhui Province (Nos. 1608085QE92, 1708085MA11) and the Hefei University of Technology 2018 Training Program of Innovation for Undergraduates (Nos. 2018CXCY092, 2018CXCY114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wan or Ru Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Guo, X., Fang, Y. et al. Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells. J Mater Sci: Mater Electron 30, 21485–21494 (2019). https://doi.org/10.1007/s10854-019-02531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02531-2

Navigation