Skip to main content
Log in

Remarkably improved uniform bipolar-resistive switching performance with a NiO buffer layer in Bi2SiO5 thin-film memory devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Orthorhombic Bi2SiO5 thin films were fabricated on Pt/Ti/SiO2/Si substrates by incorporating a NiO thin layer between Bi2SiO5 and bottom electrode. Compared with those bare Pt/Bi2SiO5/Pt devices, a remarkably improved uniformity of resistive switching parameters such as electroforming voltages, reset voltages, and a resistance ratio of low/high states was demonstrated in the Bi2SiO5 devices with an embedded NiO layer. This improvement was attributed to the formation of the partial conductive filaments resulted from sufficient oxygen vacancies at the interface. Our results provide a method for the optimization of the operation voltage control toward forefront applications in nonvolatile memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    CAS  Google Scholar 

  2. W. Hu, N. Qin, G.H. Wu, Y. Lin, S.W. Li, D.H. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)

    CAS  Google Scholar 

  3. C. Gu, J.S. Lee, Flexible hybrid organic-inorganic perovskite memory. ACS Nano 10, 5413–5418 (2016)

    CAS  Google Scholar 

  4. R.Q. Chen, W. Hu, L.L. Zou, B.J. Li, D.H. Bao, Highly uniform resistive switching effect in amorphous Bi2O3 thin films fabricated by a low-temperature photochemical solution deposition method. Appl. Phys. A Mater. 120, 379–384 (2015)

    CAS  Google Scholar 

  5. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    CAS  Google Scholar 

  6. L.L. Zou, W. Hu, W. Xie, D.H. Bao, Uniform resistive switching properties of fully transparent TiO2-based memory devices. J. Alloys Compd. 693, 1180–1184 (2017)

    CAS  Google Scholar 

  7. D.H. Yoon, S.J. Kim, J. Jung, S.J. Heo, H.J. Kim, Effect of Hf incorporation in solution-processed NiOx based resistive random access memory. Appl. Phys. Lett. 104, 093508 (2014)

    Google Scholar 

  8. S. Gao, C. Chen, Z. Zhai, H.Y. Liu, Y.S. Lin, S.Z. Li, S.H. Lu, G.Y. Wang, C. Song, F. Zeng, F. Pan, Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl. Phys. Lett. 105, 063504 (2014)

    Google Scholar 

  9. A. Bera, H.Y. Peng, J. Lourembam, Y.D. Shen, X.W. Sun, T. Wu, A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23, 4977–4984 (2013)

    CAS  Google Scholar 

  10. R.Q. Chen, W. Hu, L.L. Zou, W. Xie, B.J. Li, D.H. Bao, Multilevel resistive switching effect in sillenite structure Bi12TiO20 thin films. Appl. Phys. Lett. 104, 242111 (2014)

    Google Scholar 

  11. Q.Q. Lin, W. Hu, Z.G. Zang, M. Zhou, J. Du, M. Wang, S. Han, X.S. Tang, Transient resistive switching memory of CsPbBr3 thin films. Adv. Electron. Mater. 4, 1700596 (2018)

    Google Scholar 

  12. L. Chen, Y. Xu, Q.Q. Sun, H. Liu, J.J. Gu, S.J. Ding, D.W. Zhang, Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-based RRAM. IEEE Electron. Dev. Lett. 31, 356–358 (2010)

    CAS  Google Scholar 

  13. D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, W. Hu, Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces. 9, 6171–6176 (2017)

    CAS  Google Scholar 

  14. H. Jiang, D.A. Stewart, Using dopants to tune oxygen vacancy formation in transition metal oxide resistive memory. ACS Appl. Mater. Interfaces. 9, 16296–16304 (2017)

    CAS  Google Scholar 

  15. J. Lee, E.M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, H. Hwang, Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications. Appl. Phys. Lett. 97, 172105 (2010)

    Google Scholar 

  16. L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Appl. Phys. Lett. 97, 243509 (2010)

    Google Scholar 

  17. G. Du, Z. Chen, Q. Mao, Z. Ji, Stable nonpolar resistive switching characteristics in Cu/Cu-dispersed ZrO2/Pt memory devices. Appl. Phys. Lett. 110, 093507 (2017)

    Google Scholar 

  18. M. Ismail, E. Ahmed, A.M. Rana, F. Hussain, I. Talib, M.Y. Nadeem, D. Panda, N.A. Shah, Improved endurance and resistive switching stability in ceria thin films due to charge transfer ability of Al dopant. ACS Appl. Mater. Interfaces. 8, 6127–6136 (2016)

    CAS  Google Scholar 

  19. Y. Li, S. Long, Q. Liu, H. Lv, M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 13, 1604306 (2017)

    Google Scholar 

  20. D.C. Kim, M.J. Lee, S.E. Ahn, S. Seo, J.C. Park, I.K. Yoo, I.G. Baek, H.J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, B.I. Ryu, Improvement of resistive memory switching in NiO using IrO2. Appl. Phys. Lett. 88, 232106 (2006)

    Google Scholar 

  21. Z. Wan, G. Zhang, Synthesis and facet-dependent enhanced photocatalytic activity of Bi2SiO5/AgI nanoplate photocatalysts. J. Mater. Chem. A 3, 16737–16745 (2015)

    CAS  Google Scholar 

  22. X.-J. Dai, Y.-S. Luo, S.-Y. Fu, W.-Q. Chen, Y. Lu, Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties. J. Solid State Sci. 12, 637–642 (2010)

    CAS  Google Scholar 

  23. D. Choi, C. Soo Kim, Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt. Appl. Phys. Lett. 104, 193507 (2014)

    Google Scholar 

  24. M. Guo, Y. Chen, C. Lin, Y. Chang, B. Fowler, Q. Li, J. Lee, Y. Zhao, Unidirectional threshold resistive switching in Au/NiO/Nb: SrTiO3 devices. Appl. Phys. Lett. 110, 233504 (2017)

    Google Scholar 

  25. L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal. B Environ. 100, 97–101 (2010)

    CAS  Google Scholar 

  26. R. Chen, J. Bi, L. Wu, W. Wang, Z. Li, X. Fu, Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets. Inorg. Chem. Commun. 48, 9072–9076 (2009)

    CAS  Google Scholar 

  27. S. Kim, S. Jung, M.-H. Kim, S. Cho, B.-G. Park, Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Appl. Phys. Lett. 106, 212106 (2015)

    Google Scholar 

  28. A.Z. Hao, M. Ismail, S. He, N. Qin, W.H. Huang, J. Wu, D.H. Bao, Improved unipolar resistive switching characteristics of Au-doped nickel ferrite magnetic thin films for nonvolatile memory applications. J. Alloys Compd. 732, 573–584 (2018)

    CAS  Google Scholar 

  29. U. Lüders, M. Bibes, J.-F. Bobo, M. Cantoni, R. Bertacco, J. Fontcuberta, Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films. Phys. Rev. B 71, 134419 (2005)

    Google Scholar 

  30. S. M. Yu, B. Gao, H. Dai, B. Sun, L.F. Liu, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Improved uniformity of resistive switching behaviors in HfO2 thin films with embedded Al layers. Electrochem. Solid-State Lett. 13, H36–H38 (2010)

    CAS  Google Scholar 

  31. J. Jang, H.-H. Choi, S.H. Paik, J.K. Kim, S. Chung, J.H. Park, Highly improved switching properties in flexible aluminum oxide resistive memories based on a multilayer device structure. Adv. Electron. Mater. 4, 1800355 (2018)

    Google Scholar 

  32. L. Gao, Y. Li, Q. Li, Z. Song, F. Ma, Enhanced resistive switching characteristics in Al2O3 memory devices by embedded Ag nanoparticles. Nanotechnology 28, 215201 (2017)

    Google Scholar 

  33. G.M. Lin, Y.W. Lin, R.L. Cui, H. Huang, X.H. Guo, C. Li, J.Q. Dong, X.F. Guo, B.Y. Sun, An organic-inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C 3, 10793–10798 (2015)

    CAS  Google Scholar 

  34. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    CAS  Google Scholar 

  35. K. Qian, R.Y. Tay, M.F. Lin, J. Chen, H. Li, J. Lin, J. Wang, G. Cai, V.C. Nguyen, E.H. Teo, T. Chen, P.S. Lee, Direct observation of indium conductive filaments in transparent, flexible, and transferable resistive switching memory. ACS Nano 11, 1712–1718 (2017)

    CAS  Google Scholar 

  36. J.S. Choi, J.S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon, S.O. Kang, B.H. Park, D.C. Kim, M.J. Lee, S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes. Appl. Phys. Lett. 95, 022109 (2009)

    Google Scholar 

  37. W. Hu, L.L. Zou, X.G. Lin, C. Gao, Y.C. Guo, D.H. Bao, Unipolar resistive switching effect and mechanism of solution-processed spinel Co3O4 thin films. Mater. Des. 103, 230–235 (2016)

    CAS  Google Scholar 

  38. R.Q. Chen, M.M. Lao, J. Xu, C.D. Xu, Uniform bipolar resistive switching behaviors in BiFeO3 thin films on Fe-doped LaNiO3 electrodes. Appl. Phys. Express 7, 095801 (2014)

    Google Scholar 

  39. W. Zhou, R. Yang, H.-K. He, H.-M. Huang, J. Xiong, X. Guo, Optically modulated electric synapses realized with memristors based on ZnO nanorods. Appl. Phys. Lett. 113, 061107 (2018)

    Google Scholar 

  40. H.-L. Yuan, J.-C. Li, Effect of bending on resistive switching of NiO/ZnO nanocomposite thin films. J. Alloys Compd. 709, 752–759 (2017)

    CAS  Google Scholar 

  41. G. Milano, S. Porro, M.Y. Ali, K. Bejtka, S. Bianco, F. Beccaria, A. Chiolerio, C.F. Pirri, C. Ricciardi, Unravelling resistive switching mechanism in ZnO NW arrays: the role of the polycrystalline base layer. J. Phys. Chem. C 122, 866–874 (2017)

    Google Scholar 

  42. X. Shen, Y.S. Puzyrev, S.T. Pantelides, Vacancy breathing by grain boundaries-a mechanism of memristive switching in polycrystalline oxides. MRS Commun. 3, 167–170 (2013)

    CAS  Google Scholar 

  43. C. Dou, K. Kakushima, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, H. Iwai, Resistive switching behavior of a CeO2 based ReRAM cell incorporated with Si buffer layer. Microelectron. Reliab. 52, 688–691 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (Nos. 51872335, 51372281) and Natural Science Foundation of Guangdong Province, China (No. 2015A030311019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruqi Chen or Dinghua Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Hu, W., Hao, A. et al. Remarkably improved uniform bipolar-resistive switching performance with a NiO buffer layer in Bi2SiO5 thin-film memory devices. J Mater Sci: Mater Electron 30, 21477–21484 (2019). https://doi.org/10.1007/s10854-019-02530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02530-3

Navigation