Skip to main content
Log in

Facile preparation of graphene oxide for low-κ epoxy nanocomposites with improved thermal stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The graphene and graphene oxide have drawn much attention due to their excellent physical and chemical performances, as well as 2-dimension structure and high surface area. Herein, a facile method was proposed to prepare the graphene oxide and it was then introduced into epoxy to prepare nanocomposites. Results showed that the dielectric constant of the epoxy/graphene oxide nanocomposite was decreased by adding only 0.2 wt% of the fillers, while the dielectric loss stayed at a low level. Meanwhile, the glass-transition temperature of the nanocomposite was increased to 90.3 °C from 74.9 °C for the pure epoxy. Moreover, the thermal decomposition temperature (at 5% weight loss) of the nanocomposite was also increased greatly. Based on these results, we suggested that the graphene oxide was a promising additive for preparing low-κ epoxy nanocomposites with high properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Barber, S. Balasubramanian, Y. Anguchamy, S.S. Gong, A. Wibowo, H.S. Gao, H.J. Ploehn, H.C. zur Loye, Materials 2, 1697 (2009)

    Article  CAS  Google Scholar 

  2. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, IEEET Dielectr. Electr. Insul. 12, 629 (2005)

    Article  CAS  Google Scholar 

  3. Y. Zhou, J. Hu, B. Dang, J.L. He, RSC Adv. 6, 48720 (2016)

    Article  CAS  Google Scholar 

  4. Y. Yang, J. Hu, J.L. He, Sci. Rep. 6, 28749 (2016)

    Article  Google Scholar 

  5. G.F. Zhao, T. Ishizaka, H. Kasai, M. Hasegawa, T. Furukawa, H. Nakanishi, H. Oikawa, Chem. Mater. 21, 419 (2008)

    Article  Google Scholar 

  6. K.Y. Chan, B.H. Jia, H. Lin, B. Zhu, K.T. Lau, Mater. Lett. 216, 162 (2018)

    Article  CAS  Google Scholar 

  7. R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, J. Mater. Chem. 21, 3301 (2011)

    Article  CAS  Google Scholar 

  8. M. Devi, A. Kumar, J. Appl. Polym. Sci. 135, 45883 (2018)

    Article  Google Scholar 

  9. X. Liu, R.G. Wang, Z.J. Wu, W.B. Liu, J. Compos. Mater. 48, 1143 (2014)

    Article  CAS  Google Scholar 

  10. H.F. Tang, G.X. Chen, Q.F. Li, Mater. Lett. 184, 143 (2016)

    Article  CAS  Google Scholar 

  11. K.H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Mkhoyan, C.W. Macosko, ACS Nano 5, 1253 (2011)

    Article  CAS  Google Scholar 

  12. X.G. Mei, J.Y. Ouyang, Carbon 49, 5389 (2011)

    Article  CAS  Google Scholar 

  13. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)

    Article  CAS  Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  15. L. Sun, B. Fugetsu, Mater. Lett. 109, 207 (2013)

    Article  CAS  Google Scholar 

  16. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 4487, 457 (2007)

    Article  Google Scholar 

  17. Z.Q. Yang, Y. Yuan, F.L. Li, R.J. Liao, J. Appl. Polym. Sci. 132, 41385 (2015)

    Google Scholar 

  18. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  19. Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, J. Am. Chem. Soc. 130, 5856 (2008)

    Article  CAS  Google Scholar 

  20. S.F. Pei, Q.W. Wei, K. Huang, H.M. Cheng, W.C. Ren, Nat. Commun. 9, 145 (2018)

    Article  Google Scholar 

  21. J. Kim, L.J. Cote, J. Huang, Acc. Chem. Res. 45, 1356 (2012)

    Article  CAS  Google Scholar 

  22. S.M. Peng, Q.B. Zeng, X. Yang, J. Hu, X.H. Qiu, J.L. He, Sci. Rep. 6, 38978 (2016)

    Article  Google Scholar 

  23. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005)

    Article  CAS  Google Scholar 

  24. J.K.H. Teo, K.C. Teo, B.H. Pan, Y. Xiao, X.H. Lu, Polymer 48, 5671 (2007)

    Article  Google Scholar 

  25. X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the financial supports from the National Natural Science Foundation of China (Grant Nos. 51403013, 51273017, 20974013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Song, G., Chen, G. et al. Facile preparation of graphene oxide for low-κ epoxy nanocomposites with improved thermal stability. J Mater Sci: Mater Electron 31, 310–316 (2020). https://doi.org/10.1007/s10854-019-02515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02515-2

Navigation