Skip to main content
Log in

Single-pot solid-state synthesis of ZnO/chitosan composite for photocatalytic and antitumour applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, hybrids prepared by coupling metal oxides with polymers have attracted great interest from researchers across multiple fields. Chitosan, a natural eco-friendly biopolymer, derived from the shells of crustaceans was chosen in the current work to synthesize ZnO/chitosan composite. A simple and effective solid-state method was employed for the synthesis of the composite. The successful formation of the composite was revealed from TGA, FT-IR, XRD and EDAX analyses. XPS and FT-IR analyses ascertained that ZnO and chitosan were linked through hydrogen bonding and coordinate bonding-type interactions. Since the composite displayed absorption edge in the visible light region, photocatalytic activity of the composite was evaluated by the degradation of crystal violet dye under visible light irradiation. The successful anticancer activity of the synthesized ZnO/chitosan composite was confirmed through its MTT assay against MCF-7 cells. ZnO/chitosan composite exhibited excellent antitumour activity towards the breast cancer cells compared to control ZnO. This work may open up a new, environmentally benign route to synthesize metal oxide-based composites that can be employed for biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)

    CAS  Google Scholar 

  2. N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides towards degradation of methylene blue. Thin Solid Films 518, 2210–2215 (2010)

    CAS  Google Scholar 

  3. N. Serpone, A.V. Emeline, Semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3(5), 673–677 (2012)

    CAS  Google Scholar 

  4. N. Geetha, S. Sivaranjani, A. Ayeshamariam, J. Suthan Kissinger, M. Valan Arasu, M. Jayachandran, ZnO dopped oxide materials: mini review. Fluide Mech. 3, 141 (2016)

    Google Scholar 

  5. U. Ozgur, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc Inst. Electr. Electron. Eng. 98(7), 1255–1268 (2010)

    CAS  Google Scholar 

  6. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Google Scholar 

  7. P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater. Sci. Energy Technol. 2, 509–525 (2019)

    Google Scholar 

  8. V. Gilja, I. Vrban, V. Mandik, M. Zic, Z. Hrnjak-Murgic, Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers 10(9), 940 (2018)

    Google Scholar 

  9. H. Liu, M. Li, J. Yang, C. Hu, J. Shang, H. Zhai, In situ construction of conjugated polymer P3HT coupled hierarchical ZnO composite with Z-scheme enhanced visible-light photocatalytic activity. Mater. Res. Bull. 106, 19–27 (2018)

    CAS  Google Scholar 

  10. X.J. Huang, X.F. Zeng, J.X. Wang, J.F. Chen, Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties. Ind. Eng. Chem. Res. 57(12), 4253–4260 (2018)

    CAS  Google Scholar 

  11. V.E. Podasca, T. Buruiana, E.C. Buruiana, ‘Photocatalytic degradation of Rhodamine B dye by polymeric films containing ZnO, Ag nanoparticles and polypyrrole. J. Photochem. Photobiol. A 371, 188–195 (2019)

    CAS  Google Scholar 

  12. S.K. Mohamed, ShH Hegazya, N.A. Abdelwahab, A.M. Ramadan, Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. Int. J. Biol. Macromol. 108, 1185–1195 (2018)

    CAS  Google Scholar 

  13. A.D. Mauro, M. Cantarella, G. Nicotra, G. Pellegrinol, A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci. Rep. 7, 1–12 (2017)

    CAS  Google Scholar 

  14. A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7(2), 60–69 (2015)

    Google Scholar 

  15. K. Sivakumar, V.S. Kumar, J.J. Shim, Y. Haldorai, Photocatalytic and antimicrobial activities of poly(aniline-co-o-anisidine)/zinc oxide nanocomposite. Asian J. Chem. 26(2), 600–606 (2014)

    CAS  Google Scholar 

  16. P.K. Sanoop, K.V. Mahesh, K.M. Nampoothiri, R.V. Mangalaraja, S. Ananthakumar, Multifunctional ZnO-biopolymer nanocomposite coatings for health-care polymer foams and fabrics. J. Appl. Polym. Sci. 126(S1), E233–E244 (2012)

    Google Scholar 

  17. H.M. Ibrahim, E.M.R. El-Zairy, Chitosan as a Biomaterial—Structure, Properties, and Electrospun Nanofibers (Intech, Vienna, 2015), pp. 81–101

    Google Scholar 

  18. R. Marguerite, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Google Scholar 

  19. A.H. Chen, S.C. Liu, C.Y. Chen, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 154, 184–191 (2008)

    CAS  Google Scholar 

  20. T. Preethi, B. Abarna, G.R. Rajarajeswari, Influence of chitosan–PEG binary template on the crystallite characteristics of sol-gel synthesized mesoporous nano-titania photocatalyst. Appl. Surf. Sci. 317, 90–97 (2014)

    CAS  Google Scholar 

  21. P.M. Rahman, V.M.A. Mujeeb, K. Muraleedharan, S.K. Thomas, Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab. J. Chem. 11(1), 120–127 (2016)

    Google Scholar 

  22. L. Al-Naamani, S. Dobretsov, J. Dutta, J.G. Burgess, Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168, 408–417 (2017)

    CAS  Google Scholar 

  23. V.K.H. Bui, D. Park, Y.C. Lee, Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9(21), 1–24 (2017)

    Google Scholar 

  24. L. Li, Y. Li, L. Cao, C. Yang, Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr. Polym. 125, 206–213 (2015)

    CAS  Google Scholar 

  25. L. Lee, B.Y. Chen, W. Den, Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl. Sci. 5, 1272–1283 (2015)

    CAS  Google Scholar 

  26. S.M. Dehagi, B. Rahmanifar, A.M. Moradi, P.A. Azar, Removal of permethrin pesticide from water by chitosan-zinc oxide nanoparticles composite as an adsorbent. J. Saudi Chem. Soc. 18, 348–355 (2014)

    Google Scholar 

  27. B. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Boston, 1987), pp. 294–296

    Google Scholar 

  28. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solid b 15, 627–637 (1966)

    CAS  Google Scholar 

  29. M.L.P. Evelyn, F.W.C. Araújo, I.A. Souza, I.V.G.A. Bastos, Pharmacological screening and acute toxicity of bark roots of Guettarda platypoda. Revista Brasileira de Farmacognosia 22(6), 1315–1322 (2012)

    Google Scholar 

  30. A. Nithya, H.L. Jeevakumari, K. Rokesh, K. Ruckmani, K. Jeganathan, K. Jothivenkatachalam, A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. J. Photochem. Photobiol. B 153, 412–422 (2015)

    CAS  Google Scholar 

  31. M. Shafiq, T. Yasin, M. Aftab, R. Shaista, ‘Structural, thermal, and antibacterial properties of chitosan/ZnO composites. Polym. Compos. 35(1), 79–85 (2013)

    Google Scholar 

  32. R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, S. Khorramfar, Novel biocompatible composite (chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf. B 80, 86–93 (2010)

    CAS  Google Scholar 

  33. L.H. Li, J.C. Deng, H.R. Deng, Z.L. Liu, L. Xin, Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 345, 994–998 (2010)

    CAS  Google Scholar 

  34. E. Selvarajan, V. Mohanasrinivasan, Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater. Lett. 112, 180–182 (2013)

    CAS  Google Scholar 

  35. H.M. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind. Eng. Chem. Res. 53, 55–63 (2013)

    Google Scholar 

  36. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, S.K. Ray, Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 4, 6483–6492 (2014)

    CAS  Google Scholar 

  37. A. Nithya, K. Jothivenkatachalam, Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity. J. Mater. Sci. 26, 10207–10216 (2015)

    CAS  Google Scholar 

  38. S. Zhao, B. You, L. Jiang, Oriented assembly of zinc oxide mesocrystal in chitosan and applications for glucose biosensors. Cryst. Growth Des. 16(6), 3359–3365 (2016)

    CAS  Google Scholar 

  39. R. Al-Gaashani, S. Radiman, A.R. Dauda, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39(3), 2283–2292 (2012)

    Google Scholar 

  40. S. Frindy, A.L. Kadib, M. Lahcini, A. Primo, H. Garcia, Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for CS crosscoupling. ChemCatChem 7(20), 3307–3315 (2015)

    CAS  Google Scholar 

  41. M.A. Habib, M. Muslim, M.T. Shahadat, M. Islam, I.M. Ismail, T.S.A. Islam, A.J. Mahmood, ‘Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J. Nanostruct. Chem. 3(70), 1–10 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Rajarajeswari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarna, B., Preethi, T. & Rajarajeswari, G.R. Single-pot solid-state synthesis of ZnO/chitosan composite for photocatalytic and antitumour applications. J Mater Sci: Mater Electron 30, 21355–21368 (2019). https://doi.org/10.1007/s10854-019-02512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02512-5

Navigation