Skip to main content

Advertisement

Log in

Fabrication and characterization of conductive silk fibroin–gold nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAuIIICl4·H2O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (Eg) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10−9 to 7.12 × 10−9 S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. N.C. Tansil, L.D. Koh, M.Y. Han, Functional silk: colored and luminescent. Adv. Mater. 24, 1388–1397 (2012)

    CAS  Google Scholar 

  2. A.R. Murphy, D.L. Kaplan, Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 19, 6443–6450 (2009)

    CAS  Google Scholar 

  3. B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. Adv. Mater. 28, 4250–4265 (2016)

    CAS  Google Scholar 

  4. D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011)

    CAS  Google Scholar 

  5. X. Wang, E. Wenk, A. Matsumoto, L. Meinel, C. Li, D.L. Kaplan, Silk microspheres for encapsulation and controlled release. J. Control. Release 117, 360–370 (2007)

    CAS  Google Scholar 

  6. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, D.L. Kaplan, The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26, 147–155 (2005)

    CAS  Google Scholar 

  7. S. Hofmann, H. Hagenmüller, A.M. Koch, R. Müller, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle, L. Meinel, Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28, 1152–1162 (2007)

    CAS  Google Scholar 

  8. H.J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan, Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromol 3, 1233–1239 (2002)

    CAS  Google Scholar 

  9. H. Perry, A. Gopinath, D.L. Kaplan, L.D. Negro, F.G. Omenetto, Nano and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008)

    CAS  Google Scholar 

  10. M. Melucci, M. Durso, L. Favaretto, M.L. Capobianco, V. Benfenati, A. Sagnella, G. Ruani, M. Muccini, R. Zamboni, V. Fattori, N. Camaioni, Silk doped with a bio-modified dye as a viable platform for eco-friendly luminescent solar concentrators. RSC Adv. 2, 8610–8613 (2012)

    CAS  Google Scholar 

  11. B.D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D.L. Kaplan, F.G. Omenetto, Bioactive silk protein biomaterial systems for optical devices. Biomacromol 9, 1214–1220 (2008)

    CAS  Google Scholar 

  12. C.M. Srivastava, R. Purwar, R. Kannaujia, D. Sharma, Flexible silk fibroin films for wound dressing. Fibers Polym. 16, 1020–1030 (2015)

    CAS  Google Scholar 

  13. Y. Feng, X. Li, M. Li, D. Ye, Q. Zhang, R. You, W. Xu, Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain. Chem. Eng. 5, 6227–6236 (2017)

    CAS  Google Scholar 

  14. A. Reizabal, S. Gonçalves, R. Brito-Pereira, P. Costa, C.M. Costa, L. Pérez-Álvarez, J.L. Vilas-Vilela, S. Lanceros-Méndez, Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. Nanoscale Adv. 1, 2284–2292 (2019)

    CAS  Google Scholar 

  15. C.S. Shivananda, B. Lakshmeesha Rao, Sangappa, Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00786-3

    Article  Google Scholar 

  16. L. Yu, X. Hu, D. Kaplan, P. Cebe, Dielectric relaxation spectroscopy of hydrated and dehydrated silk fibroin cast from aqueous solution. Biomacromol 11, 2766–2775 (2010)

    CAS  Google Scholar 

  17. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. EchegoyenSanz, J. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7, 74 (2017)

    Google Scholar 

  18. Z. Schnepp, S.R. Hall, M.J. Hollamby, S. Mann, A flexible one-pot route to metal/metal oxide nanocomposites. Green Chem. 13, 272–275 (2011)

    CAS  Google Scholar 

  19. M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-Warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3, 18753–18808 (2015)

    CAS  Google Scholar 

  20. R. Ranjana, S. Asha, N. Parushuram, K.S. Harisha, M. Shilpa, B. Narayana, K. Byrappa, Y. Sangappa, Synthesis and characterization of gold nanopaticles. AIP Conf. Proc. 2009, 20042 (2018)

    Google Scholar 

  21. M.K. Sha, K. Pramanik, Regenerated silk fibroin from Bombyx mori for tissue engineering applications. Int. J. Environ. Sci. Dev 1, 404–408 (2010)

    Google Scholar 

  22. M. Gowda, K.S. Harisha, T. Ranjana, K.V. Harish, B. Narayana, K. Byrappa, Y. Sangappa, Synthesis of gold nanoparticles using silk fibroin and their characterization. AIP Conf. Proc. 1953, 030184 (2018)

    Google Scholar 

  23. G. Hui-Lin, L. De-Ye, Y. Xiao-Dong, X. Xing-Hua, Direct electrochemistry and electro catalysis of haemoglobin on nano structured gold collid-silk fibroin modified glassy carbon electrode. Sens. Actuators, B 139, 598–603 (2009)

    Google Scholar 

  24. S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. 107, 14530–14534 (2010)

    CAS  Google Scholar 

  25. B. Lakshmeesha Rao, M. Gowda, S. Asha, K. Byrappa, B. Narayana, R. Somashekar, Y. Wang, L.N. Madhu, Y. Sangappa, Rapid synthesis of gold nanoparticles using silk fibroin: characterization, antibacterial activity, and anticancer properties. Gold Bull. 50, 289–297 (2017)

    CAS  Google Scholar 

  26. M. Iosin, P. Baldeck, S. Astilean, Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy. J. Nanopart. Res. 12, 2843–2849 (2010)

    CAS  Google Scholar 

  27. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17, 566–572 (2005)

    CAS  Google Scholar 

  28. S. Asha, Y. Sangappa, G. Sanjeev, Optical properties of electron irradiated Bombyx mori silk fibroin films. J. Opt. 45, 66–72 (2016)

    Google Scholar 

  29. S. Asha, Y. Sangappa, S. Ganesh, Tuning the refractive index and optical band gap of silk fibroin films by electron irradiation. J. Spectrosc. 2015, 1–7 (2015)

    Google Scholar 

  30. H.L. Guo, D.Y. Liu, X.D. Yu, X.H. Xia, Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode. Sens. Actuators B 139, 598–603 (2009)

    CAS  Google Scholar 

  31. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, P.K. Sharma, Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater. Chem. Phys. 134, 1121–1126 (2012)

    CAS  Google Scholar 

  32. T.E. Somesh, M.Q. Al-Gunaid, B.S. Madhukar, Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 37–49 (2019)

    CAS  Google Scholar 

  33. A. Goyal, A. Sharma, I. Saini, N. Chandak, P. Sharma, Tailoring of optical and electrical properties of PMMA by incorporation of Ag nanoparticles. Bull. Mater. Sci. 40, 615–621 (2017)

    CAS  Google Scholar 

  34. N. Jaramillo-Quiceno, C. Álvarez-López, A. Restrepo-Osorio, Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Proced. Eng. 200, 384–388 (2017)

    CAS  Google Scholar 

  35. N.M. Bexiga, A.C. Bloise, M.A. de Moraes, A. Converti, M.M. Beppu, B. Polakiewicz, Production and characterization of fibroin hydrogel using waste silk fibers. Fibers Polym. 18, 57–63 (2017)

    CAS  Google Scholar 

  36. H. Yoshimizu, T. Asakura, The structure of Bombyx mori silk fibroin membrane swollen by water studied with ESR, 13C-NMR, and FT-IR spectroscopies. J. Appl. Polym. Sci. 40, 1745–1756 (1990)

    CAS  Google Scholar 

  37. P.L. Heseltine, J. Hosken, C. Agboh, D. Farrar, S. Homer-Vanniasinkam, M. Edirisinghe, Fiber formation from silk fibroin using pressurized gyration. Macromol. Mater. Eng. 304, 1800577 (2019)

    Google Scholar 

  38. S. Narayanan, M. Gokuldas, Influence of organic solvents on the structural and thermal characteristics of silk protein from the web of Orthaga exvinacea Hampson (Lepidoptera: Pyralidae). J. Chem. Biol. 9, 121–125 (2016)

    Google Scholar 

  39. N. Lin, L. Cao, Q. Huang, C. Wang, Y. Wang, J. Zhou, X.Y. Liu, Functionalization of silk fibroin materials at mesoscale. Adv. Funct. Mater. 26, 8885–8902 (2016)

    CAS  Google Scholar 

  40. X. Lü, Y. Song, A. Zhu, F. Wu, Y. Song, Synthesis of gold nanoparticles using cefopernazone as a stabilizing reagent and its application. Int. J. Electrochem. Sci. 7, 11236–11245 (2012)

    Google Scholar 

  41. S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi, Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 9, 1–9 (2014)

    CAS  Google Scholar 

  42. S.A. Aromal, K.V. Dinesh Babu, D. Philip, Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams. Spectrochim. Acta 96, 1025–1030 (2012)

    Google Scholar 

  43. M. Andiappan, S. Sundaramoorthy, N. Panda, G. Meiyazhaban, S.B. Winfred, G. Venkataraman, P. Krishna, Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Prog. Biomater. 8, 1–11 (2013)

    Google Scholar 

  44. A.S. Goikhman, V.M. Irklei, O.S. Vavrinyuk, V.I. Pirogov, X-ray diffraction determination of the degree of crystallinity of cellulose using a computer. Fibre Chem. 24, 80–85 (1992)

    Google Scholar 

  45. M. Kumari, A. Mishra, S. Pandey, S.P. Singh, V. Chaudhry, M.K.R. Mudiam, S. Shukla, P. Kakkar, C.S. Nautiyal, Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nanoparticles. Sci. Rep. 6, 27575 (2016)

    CAS  Google Scholar 

  46. T. Maruyama, Y. Fujimoto, T. Maekawa, Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 447, 254–257 (2015)

    CAS  Google Scholar 

  47. G. Palui, S. Ray, A. Banerjee, Synthesis of multiple shaped gold nanoparticles using wet chemical method by different dendritic peptides at room temperature. J. Mater. Chem. 19, 3457–3468 (2009)

    CAS  Google Scholar 

  48. J. Manson, D. Kumar, B.J. Meenan, D. Dixon, Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 44, 99–105 (2011)

    CAS  Google Scholar 

  49. T. Niidome, K. Nakashima, H. Takahashi, Y. Niidome, Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. 17, 1978–1979 (2004). https://doi.org/10.1039/B406189F

    Article  Google Scholar 

  50. D. Joseph, N. Tyagi, C. Geckeler, K.E. Geckeler, Protein-coated pH-responsive gold nanoparticles: microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J. Nanotechnol. 5, 1452–1462 (2014)

    Google Scholar 

  51. H. Zhang, J. Magoshi, M. Becker, J.Y. Chen, R. Matsunaga, Thermal properties of Bombyx mori silk fibers. J. Appl. Polym. Sci. 86, 1817–1820 (2002)

    CAS  Google Scholar 

  52. X.X. Feng, L.L. Zhang, J.Y. Chen, Y.H. Guo, H.P. Zhang, C.I. Jia, Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Int. J. Biol. Macromol. 40, 105–111 (2007)

    CAS  Google Scholar 

  53. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics 13, 441–446 (2007)

    CAS  Google Scholar 

  54. S. Mahendia, A.K. Tomar, S. Kumar, Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Compd. 508, 406–411 (2010)

    CAS  Google Scholar 

  55. N. Kulshrestha, B. Chatterjee, P.N. Gupta, Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng., B 184, 49–57 (2014)

    CAS  Google Scholar 

  56. M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68, 122–130 (2015)

    CAS  Google Scholar 

  57. S. Mahendia, P.K. Goyal, A.K. Tomar, R.P. Chahal, S. Kumar, Study of dielectric behavior and charge conduction mechanism of Poly(Vinyl alcohol) (PVA)-Copper (Cu) and Gold (Au) nanocomposites as a bio-resorbable material for organic electronics. J. Electron. Mater. 45, 5418–5426 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sangappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjana, R., Parushuram, N., Harisha, K.S. et al. Fabrication and characterization of conductive silk fibroin–gold nanocomposite films. J Mater Sci: Mater Electron 31, 249–264 (2020). https://doi.org/10.1007/s10854-019-02485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02485-5

Navigation